• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nanostructured Extremely Thin Absorber (ETA) Hybrid Solar Cell Fabrication, Optimization, and Characterization

Lambert, Darcy Erin 01 January 2011 (has links)
Traditional sources of electrical energy are finite and can produce significant pollution. Solar cells produce clean energy from incident sunlight, and will be an important part of our energy future. A new nanostructured extremely thin absorber solar cell with 0.98% power conversion efficiency and maximum external quantum efficiency of 61% at 650 nm has been fabricated and characterized. This solar cell is composed of a fluorine-doped tin oxide base layer, n-type aluminum doped zinc oxide nanowires, a cadmium selenide absorber layer, poly(3-hexylthiophene) as a p-type layer, and thermally evaporated gold as a back contact. Zinc oxide nanowire electrodeposition has been investigated for different electrical environments, and the role of a zinc oxide thin film layer has been established. Cadmium selenide nanoparticles have been produced and optimized in-house and compared to commercially produced nanoparticles. Argon plasma cleaning has been investigated as a method to improve electronic behavior at cadmium selenide interfaces. The thermal anneal process for cadmium selenide nanoparticles has been studied, and a laser anneal process has been investigated. It has been found that the most efficient solar cells in this study are produced with a zinc oxide thin film, zinc oxide nanowires grown under constant -1V bias between the substrate material and the anode, cadmium selenide nanoparticles purchased commercially and annealed for 24 hours in the presence of cadmium chloride, and high molecular weight poly(3-hexylthiophene) spin-coated in a nitrogen environment.
12

Material and device design for organic photovoltaics

Howells, Calvyn T. January 2015 (has links)
This thesis presents novel materials for photovoltaic conversion. The materials described are solution-processable organic semiconductors and have been used in the fabrication of organic photovoltaic cells (OPVs). The widely used PEDOT:PSS layer was investigated in P3HT and PTB7 photovoltaics. By doping, the efficiencies recorded were amongst the highest reported in the field using a conventional architecture. Two low band-gap BODIPY-based polymers were introduced and shown to have properties favourable for optoelectronics. Photovoltaics consisting solely of the polymers as the active component surpassed the performance expected without the use of an acceptor, indicating ambipolar behaviour, which was verified by charge carrier mobility measurements. When blended with an acceptor, the devices demonstrated a short-circuit current density similar to that of P3HT, a well-studied and successful OPV material. They also revealed a broad spectral response and were shown to operate as photodiodes. Two small molecules containing diketopyrrolopyrrole (DPP) and BODIPY were introduced and characterised. The addition of thiophenes red shifted the absorption but did not result in a sufficient bathochromic shift. Instead, a propensity to aggregate limited the performance. PLQY measurements showed the aggregation to quench luminescence. The study demonstrated the importance of controlling aggregation for efficient devices. Two solution-processable small molecules with a germanium-bridged spiro centre were investigated, and the molecular, electrochemical and optical properties discussed. The small molecule with shorter conjugation length exhibited an interesting packing motif shown to be favourable for charge transport. The mobility measurements were an order of magnitude higher than those reported for sexithiophene, a small molecule analogue, and the same order of magnitude as P3HT. The two-dimensional charge transporting nature of the material was verified with two independent techniques: time of flight (TOF) and organic field-effect transistor (OFET) measurements. The mobility of the material was found to vary with annealing, a result of morphological changes. These were studied with optical, electron and scanning probe microscopies. By controlling the morphology with the implementation of a well-defined annealing method, it was possible to improve the performance of OFETs and planar-heterojunction OPVs. Solution-processed bulk-heterojunction OPVs were fabricated, characterised and optimised with Ge spiro molecules. A PCE similar to that of P3HT, 2.66 %, was achieved for the one, whilst a PCE of 1.60 % was obtained for the other. The results are encouraging, and there is scope for improvement by increasing the overlap between the absorption and solar spectrum, for example.

Page generated in 0.114 seconds