Spelling suggestions: "subject:"phrenic nerves"" "subject:"adhrenic nerves""
1 |
Effect of Gastric Vagus Stimulation on the Phrenic Nerves Activity during Respiration and Vomiting in CatChou, Shun-Hsiang 15 July 2003 (has links)
A B S T R A C T
The purposes of this study were: (a) to compare the effect of
gastric vagal stimulation on phrenic nerve activity during respiration
and fictive vomiting, (b) to evaluate the modulatory effect of the
central pattern generators (CPGs) for respiration and vomiting
following peripheral inputs from gastric vagus.
Decerebrate, paralyzed, and ventilated cats were used in this
study. Vomiting was induced by electric stimulation of the gastric
vagus or injection of emetic drugs (e.g. apomorphine). Fictive
vomiting was identified by a characteristic series of synchronous
bursts of phrenic nerves and abdominal nerves.
During respiratory phase, the average duration of the phrenic
nerve activity was 0.79 ¡Ó 0.07 second. The average duration of the
phrenic cycles was 2.55 ¡Ó 0.13 second. Spectral analysis indicated
that the phrenic activation had high frequency oscillation of 85~95 Hz.
Gastric vagus stimulation (100 Hz, 300 mA) during respiratory phase
lead to a deviation of the phrenic duration of -0.04 seconds. The
duration of phrenic cycles was also decreased (reduced 0.25 seconds).
The spectral distribution of the phrenic neurogram was also shifted
during gastric vagal stimulation (dextral to 100~110 Hz).
During vomiting phase, the average duration of the phrenic
activity was 0.22 ¡Ó 0.03 seconds which was shorter than that during
respiratory phase. The duration of the phrenic cycle during vomiting
was 0.54 ¡Ó0.08 second. The major distribution of the power
spectrum of the phrenic neurogram during vomiting was 100~120 Hz
which is apparently higher than that during the respiratory phase.
Gastric vagus stimulation during vomiting showed an averagely
increased phrenic cycle (0.74 ¡Ó 0.05 seconds), and a shift of its
spectral distribution (dextral to 120~150 Hz).
These results suggest that vomiting and respiration were
controlled by separate CPGs. Since the output of these two CPGs
can be modified by a common peripheral signal such as stimulatary
input signal from the gastric vagus, it is postulated that these two
CPGs might be highly overlaped. Alternatively, they might be
equipped with a single neural network while possessing two separate
functions. Normally, this naural network will presume respiratory
function, once properly stimulated, such as by injecting apomorphine
or by chronic electric stimulation of gastric vagus, functions of this
neural network, driving same set of motor fibers (diaphragm and
abdominal muscles), will be shifted from respiratory control to
vomiting phase control.
|
2 |
Mécanismes moléculaires de polarisation des projections neuronales dans l'axe droite-gauche / Molecular mechanisms of polarisation of neuronal projections in the left-right axisCharoy, Camille 10 June 2014 (has links)
Les circuits nerveux s'organisent autour des grands axes de polarité du corps. Au cours du développement, la navigation ainsi que l'arrangement spatial des projections au sein de leurs territoires cibles sont contrôlés par de nombreux facteurs de guidage. Pendant ma thèse je me suis intéressée à deux modèles de formation des circuits neuronaux présentant une polarité dans l'axe droite-gauche. Le premier concerne la mise en place des projections des interneurones commissuraux de la moelle épinière, un modèle de navigation orientée et le second, porte sur l'innervation des motoneurones phréniques, un modèle d'organisation asymétrique dans le territoire cible. Les mouvements comme la marche, la course ou la nage font intervenir des circuits neuronaux particuliers dédiés à la coordination des deux côtés du corps. Ces circuits sont formés majoritairement par les projections des interneurones commissuraux de la moelle épinière. Au cours du développement, ces interneurones élaborent un axone qui traverse la ligne médiane partageant les deux moitiés du système nerveux central pour se connecter aux motoneurones ou à d'autres interneurones de l'hémi-moelle opposée. De nombreux travaux ont porté sur les mécanismes de traversée de la ligne médiane et ont mis en évidence un rôle fondamental de facteurs de guidage comme la Nétrine, les Slit et les Sémaphorines. Ces molécules sont secrétées par les cellules de la plaque du plancher (PP) environnant la ligne médiane ventrale. Lors de leur traversée les axones commissuraux sont tout d'abord attirés par les signaux attractifs secrétés par les cellules de la PP. Une fois que les axones ont traversé la ligne médiane, ils perdent leur sensibilité aux facteurs attractifs et développent des nouvelles sensibilités pour des facteurs répulsifs qui les guident hors de la PP. Une étude menée par mon équipe a permis de montrer que les axones commissuraux acquièrent une réponse à la Sémaphorine3B seulement après avoir traversé la ligne médiane. Dans cette étude, l'équipe a montré que pendant la phase qui précède la traversée de la PP, une protéase, la Calpaine-1, dégrade la Plexine-A1, le corécepteur de Sema3B (Nawabi et al., 2010). L'inhibition de cette voie pendant la traversée de la PP conduit à la stabilisation de la PlexineA1 à la surface du cône de croissance et la formation d'un complexe récepteur de Sema3B fonctionnel composé de la Plexine-A1 et de la sous-unité de liaison de Sema3B, la Neuropiline2. La suppression de l'activité Calpaine est contrôlée par des signaux de la PP dont la nature n'était pas connue. Au cours de ma thèse j'ai identifié et caractérisé les contributions fonctionnelles de deux signaux de la PP qui sont responsables de la suppression de l'activité Calpaine et la sensibilisation des axones à Sema3B après la traversée. Ces résultats ont permis d'élargir les fonctions du facteur neurotrophique gdnf, et d'apporter de nouveaux éléments sur les voies de contrôle de la signalisation Sémaphorine, les processus de traversée et les modulations post-traductionnelles des récepteurs Plexines. Dans un deuxième projet, je me suis intéressée aux asymétries droite-gauche du système nerveux, par l'étude d'un nouvel exemple de circuit neuronal asymétrique : l'innervation motrice du diaphragme. Le diaphragme est un muscle indispensable à la respiration, il est composé d'une région centrale tendineuse et de deux muscles latéraux. Ces muscles sont innervés par un groupe particulier de motoneurones provenant de la moelle épinière cervicale, qui forment les nerfs phréniques droits (D) et gauches (G). Malgré une position centrale dans l'organisme et une morphologie apparente symétrique, nous avons découvert que le diaphragme présente une asymétrie musculaire ainsi qu'une asymétrie nerveuse. Etonnamment les motoneurones phréniques établissent un motif de connexion typique et différent sur les muscles droit et gauche du diaphragme [etc...] / The nervous circuits have stereotype positions within the major body axes. During development, axonal navigation and special positioning of the axon tracts in the target territories are regulated by many axon guidance factors. During my thesis I have been interested in two models of neuronal circuit formation that present a leftright polarity. The first one concerns the formation of the spinal commissural neurons projections, a model of oriented navigation along the left-right axis and the second one is the innervation of the phrenic motoneurons, a novel model of left-right asymmetric innervation pattern. Rhythmic locomotor movements like walking, running or swimming require neuronal circuits ensuring left-right coordination. Central components of these circuits are commissural neurons of the spinal cord. During development theses neurons are projecting axons across the midline that divides the nervous system in two parts, which connect the contralateral side of the spinal cord. Extensive work focused on the mechanisms controlling midline crossing. These study revealed a fundamental role of guidance factors secreted by floor plate cells at the ventral midline such as Netrins, Slits and Semaphorins. They also revealed that before crossing, axons are attracted towards the floor plate, and navigating by the floor plate they lose responsiveness to these attractive factors and develop a new sensitivity to repulsive cues that drive them out of the floor plate. In a previous study, my team showed that commissural axons gain response to Sema3B only after floor plate crossing (Nawabi et al., 2010). Before crossing, Plexin-A1 the Sema3B receptor is processed by a protease: the Calpain1. During crossing suppression of this pathway enable Plexin-A1 expression at growth cone surface, leading to sensitization to Sema3B. The suppression of Calpain activity was found controlled by floor plate signals, which remained unknown. During my thesis I have identified and characterized the functional contribution of two floor plate signals that are responsible for the inhibition of Calpain activity and axon sensitization to Sema3B after midline crossing: the neurotrophic factor gdnf and the cell adhesion molecule NrCAM. My results bring new elements on the control of midline crossing processes, Semaphorin signaling, and post-translational modifications of the Plexins receptors. In my second project, I have been interested in left-right asymmetries of the nervous system through the study of a new model of left-right asymmetry: the diaphragm innervation. The diaphragm is a muscle essential for breathing, it is composed of one central tendinous region and two lateral muscles. These muscles are innervated by a subset of cervical spinal cord motoneurons which forms the left and right phrenic nerves. Despite its central disposition in the organism and its apparent symmetry, we noticed that the diaphragm presents nervous and muscular asymmetries. Surprisingly phrenic motoneurons present typical and different nerve patterns on the left and right diaphragm muscles. Diverse left-right characteristic have been documented in the brain but none concerned yet the spinal cord or peripheral projections. My thesis work has been dedicated to the identification of the mechanisms that control the asymmetry of the diaphragm innervation. My work showed that this asymmetry is set up very early during development via a molecular pathway that is known to control the visceral organ asymmetry. This work opens numerous perspectives and brings new information on the molecular diversity of spinal neurons that could shed a new light on the mechanisms of motoneuron physiopathology
|
Page generated in 0.045 seconds