• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des procédés electrochimiques et biologiques pour le traitement des eaux : application à l'élimination des nitrates et de la carbamazépine / Study of electrochemical and biological processes for the removal of water pollutants : application to nitrates and carbamazepine

Yehya, Tania 18 December 2015 (has links)
L'eau est vitale pour l'existence de tous les organismes vivants, mais cette ressource précieuse est de plus en en plus menacée et polluée à cause de l’augmentation de la demande en eau potable qui résulte à la fois de l’accroissement de la population mondiale mais aussi de l’activité économique tant au niveau de l’agriculture que de l’industrie. La préservation de cette ressource est aujourd'hui l'une des premières préoccupations de la recherche dans le domaine du traitement des eaux. Dans ce travail, l’élimination de deux polluants typiques des activités humaines, les nitrates et la carbamazépine, est étudiée au moyen de méthodes de traitements électrochimiques et biologiques non-conventionnelles. Le travail se concentre d'une part sur l'électrocoagulation (EC) qui associe les avantages d'être non-spécifique et de combiner plusieurs mécanismes de dépollution simultanés (adsorption, électro-oxydation ...); d’autre part, un traitement biologique innovant de faible coût utilisant une algue verte, Ankistrodesmus braunii, a été développé. Enfin, les avantages, limitations et perspectives de ces deux procédés sont comparés à ce qui existe dans la littérature et sont discutés. / Water is vital to the existence of all living organisms, but this valued resource is increasingly being threatened and polluted as human populations and activities grow and demand more water of high quality for domestic purposes and economic activities. Wastewater treatment for resource preservation is nowadays one of the first concerns of research in this field of science. In this work, two typical pollutants from agriculture and domestic activity, Nitrates and Carbamazepine, are quantitatively addressed by non-conventional electrochemical and biological treatment methods. The study focuses, on the one side, on electrocoagulation (EC) that exhibits the advantages to be non-specific and to combine various depollution mechanisms (adsorption, electro-oxidation...) that act simultaneously; on the other side, innovative and low-cost biological treatments using green algae, Ankistrodesmus braunii, are developed. Finally, the respective advantages, limitations and perspectives of these processes are compared to the literature and discussed.
2

A Passive Membrane Photobioreactor for the Isolated Cultivation of Algal Resource Utilizing Selectivity (ICARUS), with Wastewater as a Feedstock

Drexler, Ivy Lea Cormier 31 October 2014 (has links)
Renewed momentum in the microalgae industry due to commercial interest in biofuels and bioproducts is driving the need to increase the economic competitiveness of large-scale microalgal production. Current knowledge of membrane systems common in other disciplines, such as environmental engineering, marine science, and biomedicine, are relevant to algae production. With pore sizes ranging from microns to angstroms, membranes provide tailored functions for solid/liquid separation (cell retention, biomass concentration and dewatering), gas/liquid separation (gas delivery and removal), and solute/liquid separation (bioproduct recovery, feedstock preparation and effluent recycling) that are problematic or not possible with other technologies. Though membranes have great potential to facilitate cultivation and harvesting, challenges in energy reduction and fouling mitigation need to be overcome for long-term, cost-effective applications. This body of research includes a thorough literature review of membrane applications in the algal industry and three experimental studies investigating ways to improve the cultivation and harvesting of microalgal species in wastewater. The first study investigated the growth of native and augmented algal communities in various growth media. Algal monocultures (Chlorella sorokiniana and Botryococcus braunii) and algal communities native to clarifiers of a wastewater treatment plant were batch cultivated in 1) clarified effluent following a BOD removal reactor (PBCE), 2) clarified effluent following a nitrification reactor (PNCE), and 3) a reference medium (RM). After 12 days, all algal species achieved nitrogen removal between 68-82% in PBCE and 37-99% in PNCE, and phosphorus removal between 91-100% in PBCE and 60-100% in PNCE. The pH of the wastewater samples increased above 9.8 after cultivation of each species, which likely aided ammonia volatilization and phosphorous adsorption. Both monocultures grew readily with wastewater as a feedstock, but B. braunii experienced significant crowding from endemic fauna. In most cases, native algal species' nutrient removal efficiency was competitive with augmented algal monocultures, and in some cases achieved a higher biomass yield, demonstrating the potential to utilize native species for nutrient polishing and algal biomass production. In the second study, the isolated cultivation of algal resource utilizing selectivity (ICARUS) process was conceived and developed. ICARUS integrates a passive membrane photobioreactor configuration with wastewater as a growth medium. Eleven membranes of varying porosity and materials were examined based on characteristics and resulting algae productivity. Four ICARUS series (40kDa-PVDF, 0.53 g L-1, 14.1 mg; 0.1µm-PVDF, 0.43 g L-1, 16.6 mg; 12kDa-RC, 0.35 g L-1, 14.5 mg; 0.2 µm-CA, 0.41 g L-1, 14.5 mg) had a final cell density and mass yield that was significantly higher than that of suspended culture (0.25 g L-1, 9.1 mg). Optimal pore size range was identified to be 50-1000 kDa. Six additional series (0.2µm-CA, 0.1µm-PVDF, 40kDa-PVDF, 12kDa-RC, 3.5kDa-PVDF, and 3kDa-RC) also sustained significantly longer exponential growth phases than the suspended cultures. The ICARUS series maintained an average pH of 9.55, which was significantly lower than the average pH of 10.21in the suspended culture. Membrane characteristics affecting the variability in microalgae productivity were evaluated in 2D and generalized linear models. In the third study, select membranes from the laboratory experiments in Chapter 5 (12kDa-RC, 40kDa-PVDF, 7µm-NY) were tested in extended field conditions at a wastewater treatment plant, where the movement of dissolved constituents and biomass productivity were compared to that of closed suspended series. All ICARUS series had higher biomass productivity (RC, 2.87 g L-1; PVDF, 10.6 g L-1; NY, 8.45 g L-1) than the suspended series (0.38 g L-1), which was due to both a longer exponential growth phase and passive dewatering in the ICARUS series. Dissolved ions passed readily across each membrane, and no nutrient limitation was apparent in any series. Gas exchange was slower than expected, which may have been due to external and internal attached growth utilizing gases at the membrane surface. However, dissolved oxygen concentration did not limit algal growth, and adequate carbon dioxide was available to regulate ICARUS pH. In fact, the ICARUS series maintained an average pH of 7.6, whereas the pH of the control series reached 9.8-10.5. The invasion of endemic wastewater species was dependent on pore size; the RC and PVDF series maintained a monoculture, but the NY series had severe contamination. The resulting research has demonstrated a proof-of-concept of a new microalgal cultivation method which may reduce the cost of large-scale cultivation efforts integrated at wastewater treatment plants or within existing algal production facilities. Investigating various wastewater effluents, membranes, and algal strains has allowed for recommendations for the operation of scaled-up systems. Future research should focus on mechanisms and characteristics of biofouling as well as the operation of a field scale prototype. By improving large scale algal cultivation, algal biofuels may become more economically competitive with fossil fuels or other renewables, enhancing their participation in the country's diverse energy portfolio.
3

Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

Cheng, Tuoyuan 05 1900 (has links)
To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while ultrafiltration membrane rejected most biopolymers (mainly polysaccharides). Further research would focus on balancing cell growth, specific nutrients removal, and specific COD change by utilizing rotating biological contactor.
4

Valorisation de la mélasse de caroube par une approche bioraffinerie / Valorization of carob molasse through a biorefinery approach

Bahry, Hajar 14 December 2017 (has links)
Cette thèse de doctorat porte sur la valorisation du déchet solide issu de la préparation de la mélasse de caroube libanaise pour la production de bioénergie et de molécules à valeur ajoutée. L’analyse de la composition de ce déchet a montré qu’il contient 45 % (g/g) de sucres, substrats exploitables pour la fermentation alcoolique ou lactique, la production de biohydrogène, ou comme source de carbone pour la croissance d’une algue dans un procédé de phycoremédiation (traitement des eaux par les algues) pour l’élimination de micropolluants pharmaceutiques. Les résultats obtenus ont montré que la fermentation alcoolique en phase liquide à partir d’extraits de déchet de caroube peut conduire à des rendements élevés en bioéthanol sous réserve d’enrichir le milieu de culture par les éléments nécessaires pour la croissance de la levure Saccharomyces cerevisiae (en particulier l’azote), tandis qu’il est possible de produire directement le bioéthanol sur le déchet par fermentation en milieu solide sous réserve de contrôler précisément l’humidité. Nous avons également démontré que la fermentation lactique par immobilisation de Lactobacillus rhamnosus sur des billes d’alginate constitue une alternative possible au bioéthanol pour les sucres extraits du déchet. Cependant, un enrichissement du milieu de culture, ainsi que l’utilisation d’une invertase en prétraitement sont nécessaires afin de maximiser le rendement et la productivité de l’acide lactique. L’immobilisation des microorganismes a permis de réutiliser les mêmes billes d’alginate au cours de cinq cycles successifs de production. Une autre alternative potentielle aux voies précédentes est la fermentation sombre pour la production de biohydrogène directement à partir du déchet. Si des rendements intéressants ont été atteints, il faut noter que comme précédemment dans le cas de la fermentation solide du déchet, une forte dépendance aux conditions initiales de broyage a été mise en évidence ; de plus, à la carence en azote qui obligeait à supplémenter les milieux en fermentation en phase liquide s’ajoutent des besoins en fer. Enfin, l’utilisation du déchet comme substrat carboné dans un procédé de phycoremédiation avec l’algue Ankistrodesmus braunii a montré que l’élimination de 90% du diclofénac initial pouvait être atteinte en conditions de mixotrophie, même si seulement un tiers du diclofénac éliminé est effectivement métabolisé par l’algue. / This PhD thesis deals with the valorization of the solid waste generated by the Lebanese carob molasse process with the aim to produce bioenergy or high added-value platform molecules. The chemical analysis of this waste has highlighted that it contains 45% (w/w) sugars, which can be used as a substrate for alcoholic or lactic fermentation, the production of biohydrogen by dark fermentation, or as a carbon source for the growth of microalgae in a phycoremediation process (water treatment process based on algae/microalgae) for the removal of pharmaceutical micropollutants. Experimental results have shown that high ethanol yield and productivity could be achieved through alcoholic fermentation in the liquid phase using extracts from carob waste as the substrate, provided the culture medium was enriched by complementary nutrients (especially a nitro-gen source) to enhance the growth of the yeast Saccharomyces cerevisiae; in parallel, the direct production of ethanol from the solid waste based on solid-state fermentation was also proved to be efficient, provided humidity was accurately controlled. In addition, lactic fermentation per-formed with immobilized Lactobacillus rhamnosus on alginate beads was shown to constitute a potential alternative to bioethanol for the extracts from carob waste. An enriched culture medium was, however, necessary, together with the use of an invertase enzyme as a pretreatment so as to maximize the yield and the productivity of lactic acid. Using microorganism immobilization lead to the opportunity to recycle at least five times alginate beads in successive culture cycles. Another potential alternative to the above-mentioned valorization pathways was proved to lie in the dark fermentation process for biohydrogen production, directly using the solid waste. While attractive yields were reached, a strong dependence on the particle size from grinding pretreatment was emphasized, as in solid-state fermentation; moreover, iron supplementation in the culture medium was compulsory, in addition to nitrogen supplementation already described when fermentation was carried out in the liquid phase. Finally, when the carob waste was used as a substrate for the growth of the algae Ankistrodesmus braunii in a phycoremediation process, a removal yield of the initial diclofenac content about 90% could be reached under mixotrophic conditions, even though only one third of the diclofenac removed was effectively metabolized.

Page generated in 0.079 seconds