Spelling suggestions: "subject:"2physical indicator"" "subject:"bphysical indicator""
1 |
On-site effects of accelerated erosion on direct-physical soil quality indicatorsRavele, Ndamulelo January 2020 (has links)
MSCAGR (Soil Science) / Department of Soil Science / Accelerated soil erosion is a serious agricultural problem in South Africa limiting soil productivity and little it’s known about its effect on soil quality. This study aimed to provide a less laborious, less time consuming and inexpensive protocol of estimating the effects of accelerated erosion on the soil quality. An assessment was undertaken in sites showing threat of accelerated erosion using various direct physical soil quality indicators. Four sites with different soil types were identified at initial survey. In each of the sites, two areas were selected. These areas were then classified as Not Visibly Eroded (NVE) and Visibly Eroded (VE). Each measurement in all site was done in those area classified respectively. The most stable structure and consistency were observed in NVE areas. Medium and large stones were observed in VE areas in all soil types studied. The VE soils were lighter in colour compared to soil colour in NVE. Aggregate stability and moisture content were significantly higher for the NVE and VE areas. Difference in values of water stable aggregates between NVE and VE was clear which showed that stability of aggregates is important in determining soil susceptible to erosion. Bulk density values were slightly different for the two areas. However, there was no significant difference between the bulk density of NVE and VE. Differences between soil texture for NVE and VE areas are only apparent for the sand, clay and silt particles with no changes in textural class. For all soil types investigated, silt was vulnerable to accelerated erosion with respect to soil texture. The research has provided baseline protocol for using physical soil quality indicators to find out effects of accelerated erosion. Soil functionality is critical in the restoration process of soil quality, and the methods used here could be effectively applied in a broad range assessment of erosion impact. / NRF
|
2 |
Avaliação da qualidade do solo em sistemas de cultivo irrigado agroecológico e convencional no semiárido do Rio Grande do NorteSANTIAGO, Fábio dos Santos 25 February 2015 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2016-08-15T12:05:31Z
No. of bitstreams: 1
Fabio dos Santos Santiago.pdf: 3247120 bytes, checksum: d574e99d4f917f68af4d37b81e4e642f (MD5) / Made available in DSpace on 2016-08-15T12:05:31Z (GMT). No. of bitstreams: 1
Fabio dos Santos Santiago.pdf: 3247120 bytes, checksum: d574e99d4f917f68af4d37b81e4e642f (MD5)
Previous issue date: 2015-02-25 / The Semiarid Northeast Brazil is characterized by hydric deficit, has low soil organic matter, mainly due to erosion, high temperatures and reduced replacement of plant residues and/or organic fertilization. The inadequate use and management in farming systems in the semiarid region may decline the soil's ability to sustain short-time production. This can lead an itinerant agriculture in search of new areas on the caatinga, causing the loss of biodiversity and vulnerability of food production. In this context, currently, there is a demand of the scientific community to develop sustainable agricultural systems and the world population with healthy foods. Therefore, the transition of agricultural systems in Semiarid from conventional to agroecological becomes strategic for resilience, maintaining the soil productivity and less pressure on the caatinga. The agroecological management of soil excludes the use of chemical fertilizers and pesticides, and at the same time, contributed to attachment of organic carbon, nutrient cycling, soil protection and diversity of culture. In this sense, the aim of this study is to prove the relevance of soil quality in irrigated agroecological systems (A area) compared to conventional (C area). For this, it were used areas A and C and other natural vegetation (V area), without human action, for characterization purposes; located in the community of family farmers Sombras Grandes, Caraúbas, RN. The historical use and management of the A, C, V areas were recorded, in order to observe the trend of soil quality indicators from a time frame. In the A and C areas, simple soil samples were used to determine physical (Bd, TP, CDW, FD, AW, AW/TP and Mfc/TP) and chemical (pH, Ca, Mg, K, Na, P assimilable, SB, Al + H, BS, CEC, TOC, CS, EC and ESP) indicators in the layers 0-20 cm and 20-40 cm in the sampling grid of 0.5 ha, in five georeferenced points/year, between 2009 and 2012, totaling 40 samples per area; soil penetration resistance (SPR) with the use of impact penetrometer IAA/Planalsucar - Stolf model, to a depth of 0-20 cm, 0.05 m of intervals, in five points with five replications, between 2009 and 2011; and soil quality index (SQI), integrated quality index (IQI) and soil quality index through soil deterioration (SQId). The analysis of soil macro fauna was performed by Pitfall traps, in order to identify the organisms into functional groups and the wealth index of species of Margalef, Shannon diversity and uniformity of Pielou. It was used the statistical method nonparametric Kruskal Wallis for comparison of soil quality indicators between A and C areas at 5% and 1% significance; the Pearson correlation matrix to test the association between the variables; and principal component analysis (PCA) to check the indicators sensitivity . The use and management in the A area, 0-20 cm layer, it were significantly different and presented better results of soil quality to the C area, in relation to physical (Bd, TP, CDW and FD) and chemical (TOC, CS and Al + H) indicators of soil. The chemical indicators (Ca, Mg, K, CEC, P and SB) didn‟t achieve significant difference between A and C areas, but presented high values able to maintain soil fertility . There were significant difference of PR values in the A area and the best results in relation to the C area, the layers 0-5 cm and 5-10 cm. In A area, layers 0-20 cm and 20-40 cm, there was a significant correlation (p ≤ 0.01) and positive between TOC and CEC (r = 0.71, r= 0.71, respectively). In the A area, 0-20 cm layer, TP showed significant correlation (p ≤ 0.01) with TOC and positive (r = 0.70). In the A area, Factor 1, 0-20 cm layer, it was the main component (MC) that explained most of the variance data corresponding to 34.20%; and soil variables that presented significant correlation (p≤0.01) and positive with the agroecological farming system were Mg (0.716946), SB (0.849990), BS (0.821112), CEC (0.848423), TOC (0.859802), CS (0.825854) and TP (0.776193), indicating that agroecological practices positively affected soil quality indicators over time. The richness, diversity and uniformity of soil fauna indices in A area showed higher values than the C area. The different methodologies and depths studied, soil quality indices were better classified in the A area in relation to C area. The A area had physical indicators, chemical and biological able to maintain and/or increase the soil productive capacity, without the use of chemical fertilizers. / O Semiárido do Nordeste do Brasil é caracterizado por déficit hídrico, apresenta baixa matéria orgânica do solo devido, principalmente, a processos de erosão, elevadas temperaturas e reduzida reposição de resíduos vegetais e/ou adubação orgânica. O uso e manejo inadequados em sistemas de cultivo na região semiárida podem declinar a capacidade do solo em sustentar a produção em tempo reduzido. Isso pode levar uma agricultura itinerante à busca de novas áreas sobre a caatinga, gerando a perda da biodiversidade e vulnerabilidade da produção de alimentos. Neste contexto, atualmente, há uma procura da comunidade científica em desenvolver sistemas agrícolas sustentáveis e da população mundial por alimentos saudáveis. Portanto, a transição de sistemas agrícolas no Semiárido de convencionais para agroecológicos se torna estratégico para resiliência, manutenção da capacidade produtiva do solo e menor pressão sobre a caatinga. O manejo agroecológico do solo exclui o uso de adubos químicos e agrotóxicos e, ao mesmo tempo, contribuiu para fixação de carbono orgânico, ciclagem de nutrientes, proteção do solo e diversidade de cultivo. Neste sentido, o objetivo do trabalho é comprovar a relevância da qualidade do solo em sistemas de cultivo irrigado agroecológico (área A) comparativamente ao convencional (área C). Para isso, foram utilizadas as áreas A e C e uma de vegetação natural (área V), sem ação antrópica, para fins de caracterização; na comunidade de agricultores familiares de Sombras Grandes, Caraúbas, RN. Foram registrados os históricos de uso e manejo nas áreas A, C, V, de modo a observar a tendência dos indicadores de qualidade do solo a partir de um recorte temporal. Nas áreas A e C, foram utilizadas amostras simples de solo para determinação dos indicadores físicos (Ds, PT, ADA, GF, AD, AD/PT e Uvcc/PT) e químicos (pH, Ca, Mg, K, Na, P assimilável, SB, Al + H, V, CTC, COT, Est C, CE e PST), nas camadas 0-20 cm e 20-40 cm, numa malha amostral de 0,5 ha, em cinco pontos georreferenciados/ano, entre 2009 e 2012, totalizando 40 amostras por área; resistência à penetração do solo (RP) com utilização de penetrômetro de impacto modelo IAA/Planalsucar – Stolf, 0-20 cm, intervalos de 0,05m, em cinco pontos com cinco repetições, entre 2009 e 2011; e índice de qualidade do solo (IQS), índice de qualidade integrada (IQI) e índice de qualidade através da deterioração do solo (IQSd). A análise da macrofauna do solo foi realizada através de armadilhas tipo Pitfall, visando à identificação dos organismos em grupos funcionais e dos índices de riqueza de espécies de Margalef, diversidade de Shannon e uniformidade de Pielou. Foi utilizado o método estatístico não paramétrico de Kruskal Wallis para efeito de comparação dos indicadores de qualidade do solo entre as áreas A e C a 5% e 1% de significância; a matriz de correlação de Pearson para testar a associação entre as variáveis; e análise de componentes principais (ACP) para verificar a sensibilidade dos indicadores. O uso e manejo na área A, camada 0-20 cm, apresentaram diferença significativa e melhores resultados de qualidade do solo que à área C, em relação aos indicadores físicos (Ds, PT, ADA e GF) e químicos (COT, Est C e Al + H) do solo. Os indicadores químicos (Ca, Mg, K, CTC, P e SB) não obtiveram diferença significativa entre as áreas A e C, mas apresentaram valores altos capazes de manter a fertilidade do solo. Houve diferença significativa dos valores de RP na área A e melhores resultados em relação à área C, nas camadas 0-5 cm e 5-10 cm. Na área A, camadas 0-20 cm e 20-40 cm, houve correlação significativa (p≤ 0,01) e positiva entre COT e CTC (r = 0,71, r = 0,71, respectivamente). Na área A, camada 0-20 cm, a PT apresentou correlação significativa (p≤ 0,01) com COT e positiva (r = 0,70). Na área A, o Fator 1, camada 0-20 cm, foi o componente principal (PC) que explicou a maior variância dos dados que correspondeu a 34,20%; e as variáveis do solo que apresentaram correlação significativa (p≤ 0,01) e positiva com o sistema de cultivo agroecológico foram o Mg (0,716946), SB (0,849990), V (0,821112), CTC (0,848423), COT (0,859802), Est C (0,825854) e a PT (0,776193), evidenciando que as práticas agroecológicas afetaram positivamente os indicadores de qualidade do solo ao longo do tempo. Os índices de riqueza, diversidade e uniformidade da fauna edáfica na área A apresentaram maiores valores que a área C. Nas diferentes metodologias e profundidades estudadas, os índices de qualidade do solo foram melhores classificados na área A em relação a C. A área A apresentou indicadores físicos, químicos e biológicos capazes de manter e/ou elevar a capacidade produtiva do solo, sem a necessidade da utilização de adubos químicos.
|
Page generated in 0.0779 seconds