• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ferromagnetically filled carbon nanotubes : radial structures and tuning of magnetic properties through new synthesis methods

Boi, Filippo January 2013 (has links)
Multiwall carbon nanotubes filled with continuous single-crystals of the ferromagnetic phase -Fe were produced with two new synthesis methods: the boundary layer chemical vapour synthesis and the perturbed vapour chemical vapour deposition. In the first method, the nanotubes nucleate and grow radially from a central agglomeration of homogeneously nucleated spherical particles in a randomly fluctuating vapour created in the viscous boundary layer between a rough surface and a laminar pyrolyzed-ferrocene/Ar vapour flow. In the second method, the nanotubes nucleate and form in a flower-like arrangement departing from homogeneously nucleated particles. These particles are produced by the creation of a local perturbation in a vapour with a high density of Fe and C species obtained from the pyrolysis of ferrocene in a laminar Ar flow. Electron microscopy investigations revealed that the continuous single crystals obtained with both methods exhibit diameters much lower than the critical diameter for a single magnetic domain of -Fe (~ 66 nm). In the radial structures, the single-crystal diameter is in the range of ~ 17-37 nm, while in the flower-like structures the single crystals show mainly a diameter of ~ 30 nm and ~ 55 nm. The average single crystals length is 7-8 m in the case of the radial structures and 19-21 m in the case of the flower-like structures. DC magnetization measurements at 5 K show different magnetic behaviours. The flower-like structures present a very high saturation magnetization of 189.5 emu/g and a high coercivity of 580 Oe. The radial structures exhibit an exchange-coupled ferromagnetic/antiferromagnetic system despite only 2% of -Fe is present inside the nanotubes. The radial structures obtained at flow-rates of 3.5 ccm and 20 ccm, show saturation-magnetizations of 31emu/g and 13 emu/g, and coercivities of 790 Oe and 843 Oe respectively.
2

Experiments on mesoscopic electron transport in carbon nanotubes

Nygård, Jesper. January 1900 (has links) (PDF)
Thesis (Ph.D.)--Københavns universitet, 1996. / Ph.d. afhandling, Københavns Universitet Med litteraturhenvisninger Title from title screen (viewed on July 9, 2008). Title from document title page. Includes bibliographical references. Available in PDF format via the World Wide Web.
3

Studies on optical characterisation of carbon nanotube suspensions

Nish, Adrian January 2008 (has links)
This thesis reports studies done on single-walled carbon nanotubes (SWNTs) using optical spectroscopy as the primary investigative technique. It focuses on advances in sample preparation which have been made possible through improvements to the method of photo-luminescence excitation (PLE) mapping of nanotubes. An introduction to the field and some theoretical models are presented initially to provide a background to the experimental chapters which follow. A description of the standard procedure for sample preparation in aqueous surfactants is then followed by a detailed introduction to PLE mapping, including modeling of SWNT spectra. The next chapter discusses improvements to the sample preparation method by using organic polymer solutions instead of aqueous surfactants for suspending the nanotubes. The results show reductions in the distribution of SWNT species which are solubilised, leading to significant improvements in the resolution of the optical absorbance spectra and an increased photoluminescence yield. Two experiments which were performed on the novel polymer-SWNT systems are then described. The first shows (via PLE mapping) that energy is transfered to the SWNTs when the polymer is photo-excited. The possible mechanisms behind this, as well as the implications for using carbon nanotubes as an additive in polymer photovoltaics, are discussed. The second experiment details a recent magneto-PL study of SWNTs embedded in films produced from the polymer solutions. Here, the improved optical signatures and absence of strain at low temperatures have revealed a previously unseen high field intensity dependence. The behavior has been explained by the magnetic field induced mixing of the excitonic states.
4

Application of nanostructured emitters for high efficiency lighting

Searle, Andrew January 2014 (has links)
This is the first study comparing morphologies of CNT films on Kanthal wire, with their field emission properties, and as such offers ways to design better cylindrical emitter devices. A low turn-on field was achieved (0.35 V/µm), the field emission results have been explained using a simple model, and a fluorescent lamp was fabricated. Whilst previous work has been done on the link between “as grown” CNT films and their respective field emission properties on flat substrates, very little work has been done on linking morphology to emission performance on wire substrates, where the morphology can be very different. Microscopic structures such as towers, ridges and clumps consisting of many aligned or entangled CNTs were grown using an aerosol chemical vapour deposition (a-CVD) technique. Hydrogen added to the carrier gas resulted in a decrease in defect density in the growth of undoped CNTs, and an increase in defect density in the growth of nitrogen doped CNTs (N-CNTs) and boron doped CNTs (BCNTs). In-situ transmission electron microscopy (TEM) studies show that damage to CNT tips results in a significantly higher turn-on field compared to undamaged tips. This can be recovered by making the CNT emit current for several minutes which makes the tip recrystallize due to heat caused by the Nottingham effect. The field emission properties of the “as grown” CNT films are dominated by protruding CNTs found at the edges of ridge and tower microscopic structures. The field emission properties are also related to the dimensions of these structures with the longest ridges (hence those with the longest protruding CNTs) resulting in the lowest turn-on electric field. The ridge and tower structures act to accommodate protruding CNTs at their edges and their physical dimensions (mainly width) act to separate these emitters so that screening is minimised. This work shows that efficient emitters can be fabricated effectively from simple a-CVD techniques and microscopic structures act to improve, not degrade, field emission properties.

Page generated in 0.0422 seconds