• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Combinatorics and gauge-string duality

Garner, David P. R. January 2015 (has links)
This thesis exhibits a range of applications of combinatoric methods to string theory. The concepts and techniques used in the counting of ribbon graphs, the theory of finite groups, and the construction of cell complexes can give powerful methods and interesting insights into the nature of gauge-string duality, the limits of CFT factorisation, and the topology of worldsheet moduli space. The first part presents a candidate space-time theory of the Belyi string with a holographic extension to three-dimensional Euclidean gravity. This is a model of gauge-string duality in which the correlators of the Gaussian Hermitian matrix model are identfied with sums over worldsheet embeddings onto the 2-sphere target space. We show that the matrix model can be reformulated on the sphere by using su(2) representation couplings, and that the analogues of Feynman diagrams in this model can be holographically extended to 3-manifolds within the Ponzano-Regge model. The second part explores the limits of large N factorisation in conformal field theory and the dual interpretation in supergravity. By considering exact finite N correlators of single and multi-trace half-BPS operators in N = 4 super Yang-Mills theory in four dimensions, we can explicitly nd the exact threshold of the operator dimensions at which the correlators fail to factorise. In the dual supergravity, this is the energy regime at which quantum correlations between distinct gravitons become non-vanishing. The third part develops a cell decomposition of the moduli space of punctured Riemann surfaces. The cells are specified by a particular family of ribbon graphs, and we show that these graphs correspond to equivalence classes of permutation tuples arising from branched coverings of the Riemann sphere. This description yields efficient computational approaches for understanding the topology of moduli space.

Page generated in 0.1113 seconds