• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1300
  • 1296
  • 556
  • 139
  • 139
  • 139
  • 139
  • 139
  • 139
  • 71
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3528
  • 3528
  • 3528
  • 1183
  • 1179
  • 1172
  • 1149
  • 1137
  • 789
  • 747
  • 408
  • 407
  • 349
  • 348
  • 214
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

Fricke radiation dosimetry using nuclear magnetic resonance

Podgorsak, Matthew B. January 1989 (has links)
No description available.
602

Equilibrium phase separation in polymer brushes

Soga, K. Geoffrey (Kenneth Geoffrey) January 1996 (has links)
No description available.
603

Theory of Ostwald ripening

Yao, Jian Hua January 1992 (has links)
No description available.
604

Characteristics of a laser desorption ion source

Ghalambor Dezfuli, Abdol Mohammad January 1990 (has links)
No description available.
605

Extending the Capabilities of Continuum Embeddings in First-Principle Simulations of Materials

Medrano, Gabriel 05 1900 (has links)
In recent years, continuum models of solvation have had exceptional success in materials simulations as well as condensed matter physics. They can easily capture the effects of disordered systems, such as neutral liquids or electrolytes solutions, on material interfaces without the need for expensive statistical sampling. The Environ library (www.quantum-environ.org) implements different continuum models and correction schemes, which is the focus of this presentation. Recently refactored into a stand-alone library, many changes have been introduced in Environ, making it more flexible and computationally efficient. Introduction of a double-cell formalism allows for faster ab initio DFT calculations while reparameterization of soft-sphere continuum model allows for smaller density cutoffs. Furthermore, Environ's periodic boundary conditions correction schemes have been expanded by including the AFC90 library, which allows for faster DFT calculations of partially periodic systems, such as slabs, wires, and isolated molecules. Finally, stand-alone Environ can now provide atomic and molecular descriptors, which can be used to characterize solvated interfaces, e.g. in machine learning applications. The specific details of the implementations are reviewed as well as their efficiency and some choice applications for different calculation setups and systems.
606

Capillary flow of non-Newtonian fluids

Ducharme, Réjean, 1970- January 1995 (has links)
No description available.
607

Dual-wavelength scanning near-field optical microscopy

LeBlanc, Philip R. January 2002 (has links)
No description available.
608

Influence of ultra-thin Au interface layers on the structure and magnetic anisotropy of Co films

Eickmann, James Thomas, 1970- January 1998 (has links)
I have investigated the influence of an ultra-thin Au interface layer on the magnetic anisotropy of Co-Pd and Co-Cu structures. Sandwich structures of the form X/Co/Y/Cu/Si(111), with (X, Y) = (Pd, Pd), (Au, Pd), (Pd, Au), (Cu, Cu), (Au, Cu), and (Cu, Au) were studied. For each structure, a Au layer of systematically varied thickness (t(Au)) was inserted at one Co interface. I also investigated Co/Pd and Co/Cu multilayer systems. For each Co-Pd sandwich structures a maximum is observed in the magnetic anisotropy for t(Au) = 1 to 1.5 atomic monolayer (ML). For the Co/Pd multilayer system, a maximum in coercivity occurs with tAu = 0.5 ML. For each Co-Cu sandwich structure except (X, Y) = (Cu, Au), a minimum in magnetic anisotropy is observed at t(Au) = 1 ML. For the Co/Cu multilayer system, a decrease in magnetoresistance was seen with increased tAu except in multilayers with a relatively thin Co layer thickness (∼3 ML) which display a peak in magnetoresistance is seen at tAu = 1 ML. I have also investigated the strain, surface alloying, and surface (interface) roughness of these systems using RHEED, XPS, and LAXD. Analysis of these measurements reveals some correlation between magnetic anisotropy and both strain and surface roughness. Based on my investigations, I conclude that the most likely cause for the non-monotonic changes seen in anisotropy is changes in the surface magnetocrystalline anisotropy. While strain and surface roughness may also play a role, I believe that the influence of the ultra-thin Au interlayer on the orbital hybridization and electronic environment at the interface is dominant.
609

A transition-edge-sensor-based instrument for the measurement of individual He2* excimers in a superfluid 4He bath at 100 mK

Carter, Faustin Wirkus 17 February 2016 (has links)
<p> This dissertation is an account of the first calorimetric detection of individual He*<sub>2</sub> excimers within a bath of superfluid <sup>4</sup>He. When superfluid helium is subject to ionizing radiation, diatomic He molecules are created in both the singlet and triplet states. The singlet He molecules decay within nanoseconds, but due to a forbidden spin-flip the triplet molecules have a relatively long lifetime of 13 seconds in superfluid He. When He*<sub> 2</sub> molecules decay, they emit a ~15 eV photon. Nearly all matter is opaque to these vacuum-UV photons, although they do propagate through liquid helium. The triplet state excimers propagate ballistically through the superfluid until they quench upon a surface; this process deposits a large amount of energy into the surface. The prospect of detecting both excimer states is the motivation for building a detector immersed directly in the superfluid bath.</p><p> The detector used in this work is a single superconducting titanium transition edge sensor (TES). The TES is mounted inside a hermetically sealed chamber at the baseplate of a dilution refrigerator. The chamber contains superfluid helium at 100 mK. Excimers are created during the relaxation of high-energy electrons, which are introduced into the superfluid bath either in situ via a sharp tungsten tip held above the field-emission voltage, or by using an external gamma-ray source to ionize He atoms. These excimers either propagate through the LHe bath and quench on a surface, or decay and emit vacuum-ultraviolet photons that can be collected by the detector.</p><p> This dissertation discusses the design, construction, and calibration of the TES-based excimer detecting instrument. It also presents the first spectra resulting from the direct detection of individual singlet and triplet helium excimers.</p>
610

Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics

Holland, Eric T. 16 February 2016 (has links)
<p> Engineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creating controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architecture comprised entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum information science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary system or quantum reservoir engineering. Quantum reservoir engineering maintains a desired subset of a Hilbert space through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quantum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a <i>priori</i>. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering protocols realizing hardware efficient circuit QED designs. </p>

Page generated in 0.0799 seconds