Spelling suggestions: "subject:"biophysik."" "subject:"geophysik.""
541 |
Aspects of non-geometry in string theoryPatalong, Peter 27 January 2014 (has links) (PDF)
No description available.
|
542 |
Charge separation and transfer in hybrid type II tunneling structures of CdTe and CdSe nanocrystalsGroß, Dieter 08 November 2013 (has links) (PDF)
Halbleiter-Nanokristalle sind eine besondere Materialklasse in den Nanowissenschaften. Sie sind kleinste Halbleiter-Kristalle, die an ihrer Oberfläche mittels organischer Chemie passiviert wurden. Damit können Sie auf völlig neue Arten produziert, prozessiert und zu größeren hybriden Überstrukturen zusammengesetzt werden. In diesen Nanomaterialien treten neue Effekte insbesondere durch die Größeneinschränkung auf. Es stellt sich vielfach die Frage, welche Eigenschaften von den Halbleiter-Materialien übernommen werden und was alleine aufgrund der geometrischen Größenordnung im Nanometerbereich von 1-10 nm zustande kommt.
Diese Arbeit beschäftigt sich mit dem Nachweis von elektronischem Transfer über eine quantenmechanische Tunnelbarriere aus organischen Materialien zwischen dicht gepackten Halbleiternanokristallen. Diese Barriere besteht aus Molekülen der Oberflächenpassivierung und Material für die gewählten Selbstorganisationsmethoden, so dass eine organische Tunnelbarriere von ca. 1 nm zwischen den Nanokristallen der Größe von ca. 3 nm entsteht. Um elektronischen Tunnel-Transfer nachzuweisen, wird erfolgreich der intrinsische Typ-II-Bandversatz der klassischen ausgedehnten CdTe und CdSe-Volumenhalbleitern ausgenutzt, der bedeutet, dass das globale Valenzbandmaximum in CdSe und das Leitungsbandminium in CdTe liegen. Es ist daher Hauptziel der Arbeit, Ladungstrennung in Hybridstrukturen aus dicht gepackten Typ-II-angeordneten CdTe- und CdSe- Halbleiternanokristallen nachzuweisen.
Mittels Photolumineszenzspektroskopie wurde indirekt der Elektronenübergang von CdTe- zu CdSe-Nanokristallen untersucht. Es wurden zwei verschiedene Methoden zur Selbstorganisation überprüft: ungeordnete Cluster aus CdTe- und CdSe-Nanokristallen in wässriger Lösung sowie trockene geschichtete Systeme aus Nanokristall-Monolagen auf Glassubstraten. In beiden Probensystemen deutet eine Photolumineszenzunterdrückung um bis zu 70 % bei den CdTe-Nanokristallen Ladungstrennung durch Elektronenübergang von CdTe- zu CdSe-Nanokristallen an. Eine maximale Transferrate von um 1/100 ps wurde in geschichteten Proben ermittelt. Neben dem Elektronentransfer wurde gezeigt, dass Energietransfer von CdSe- zu CdTe-Nanokristallen stattfindet, der nicht die beobachtete Photolumineszenzunterdrückung erklärt, da er ihr entgegenwirkt. Durch Variation der Nanokristallgrößen konnte eine Korrelation der Photolumineszenzunterdrückung mit dem Versatz der am Elektronentransfer beteiligten Energieniveaus der Nanokristalle aufgedeckt werden. Durch diese indirekten Beweise konnte die Ladungstrennung wie auch der intrinsische Typ-II-Versatz in den Hybridsystemen der verwendeten CdTe- und CdSe-Nanokristallen angezeigt werden.
Oberflächenphotospannungsmessungen bewiesen eindeutig die gerichtete Ladungstrennung in geschichteten Systemen aus CdTe und CdSe Nanokristallen. Die Orientierung der Typ II-Grenzschicht aus CdTe- und CdSe-Nanokristalllagen bestimmte die Richtung der Ladungstrennung, so dass eine umgekehrte Schichtfolge die gemessene Polarität änderte. Der Ladungstransfer wird fast vollständig unterdrückt, wenn die Barrierendicke verdoppelt wird, was für Tunneltransfer erwartet wird. Weiterhin wurden Elektronendiffusion über CdSe-Nanokristallmultischichten und langsamerer Ladungstransfer über CdTe-Nanokristallmultischichten nachgewiesen.
Die Ergebnisse dieser Arbeit könnten für Anwendungen zur solaren Energiegewinnung wie Photovoltaik oder photokatalytischer Wasserspaltung relevant sein.
|
543 |
New insights for femtosecond spectroscopyKrebs, Nils 16 October 2013 (has links) (PDF)
No description available.
|
544 |
Optically selected galaxy clusters as a cosmological probeMana, Annalisa 09 October 2013 (has links) (PDF)
Multi-wavelength large-scale surveys are currently exploring the Universe and establishing the cosmological scenario with extraordinary accuracy. There has been recently a significant theoretical and observational progress in efforts to use clusters of galaxies as probes of cosmology and to test the physics of structure formation. Galaxy clusters are the most massive gravitationally bound systems in the Universe, which trace the evolution of the large-scale structure. Their number density and distribution are highly sensitive to the underlying cosmological model. The constraints on cosmological parameters which result from observations of galaxy clusters are complementary with those from other probes.
This dissertation examines the crucial role of clusters of galaxies in confirming the standard model of cosmology, with a Universe dominated by dark matter and dark energy. In particular, we examine the clustering of optically selected galaxy clusters as a useful addition to the common set of cosmological observables, because it extends galaxy clustering analysis to the high-peak, high-bias regime. The clustering of galaxy clusters complements the traditional cluster number counts and observable-mass relation analyses, significantly improving their constraining power by breaking existing calibration degeneracies.
We begin by introducing the fundamental principles at the base of the concordance cosmological model and the main observational evidence that support it. We then describe the main properties of galaxy clusters and their contribution as cosmological probes.
We then present the theoretical framework of galaxy clusters number counts and power spectrum. We revise the formulation and calibration of the halo mass function, whose high mass tail is populated by galaxy clusters. In addition to this, we give a prescription for modelling the cluster redshift space power spectrum, including an effective modelling of the weakly non-linear contribution and allowing for an arbitrary photometric redshift smoothing. Some definitions concerning the study of non-Gaussian initial conditions are presented, because clusters can provide constraints on these models.
We dedicate a Chapter to the data we use in our analysis, namely the Sloan Digital Sky Survey maxBCG optical catalogue. We describe the data sets we derived from this large sample of clusters and the corresponding error estimates. Specifically, we employ the cluster abundances in richness bins, the weak-lensing mass estimates and the redshift-space power spectrum, with their respective covariance matrices. We also relate the cluster masses to the observable quantity (richness) by means of an empirical scaling relation and quantify its scatter.
In the next Chapter we present the results of our Monte Carlo Markov Chain analysis and the cosmological constraints obtained. With the maxBCG sample, we simultaneously constrain cosmological parameters and cross-calibrate the mass-observable relation. We find that the inclusion of the power spectrum typically brings a 50% improvement in the errors on the fluctuation amplitude and the matter density. Constraints on other parameters are also improved, even if less significantly. In addition to the cluster data, we also use the CMB power spectra from WMAP7, which further tighten the confidence regions. We also apply this method to constrain models of the early universe through the amount of primordial non-Gaussianity of the initial density perturbations (local type) obtaining consistent results with the latest constraints.
In the last Chapter, we introduce some preliminary calculations on the cross-correlation between clusters and galaxies, which can provide additional constraining power on cosmological models.
In conclusion, we summarise our main achievements and suggest possible future developments of research.
|
545 |
Modellierung angetriebener Partikelsystemen in zwei Dimensionen / Modelling propelled particle system inWeber, Christoph 15 July 2013 (has links) (PDF)
Birds fly, cells crawl and bacteria swim. Each of these individuals has their own propulsion mechanism leading to a persistent motion, hence they all belong to the class referred to as propelled particle systems. Propelled particles in large number typically exhibit impressive self-organization processes such as the flocking motion of birds, the coherent motion of cell colonies and the swarming of bacteria. The emergence of collective motion in these non-equilibrium systems constitutes a ubiquitous phenomenon in nature—and perhaps one of the most fascinating. One reason for this might be the emergence of highly dynamic, coherently moving spatial patterns such as clusters, swirls or waves, and the fact that the patterns commonly extend over length scales much larger than the size of the individuals. To elucidate the physical principles underlying the collective motion of these particles, numerous theoretical studies have been devoted to model propelled particle systems by approaching the problem on all levels of description. These range from particle-based simulations to kinetic theory and hydrodynamic models. However, these models were typically inspired by the idea of universality and tended to analyze the generic non-equilibrium phenomena in propelled particle systems, thereby obscuring a one-to-one relation to experimental studies.
This thesis focusses on theoretical modeling approaches for propelled particle systems that are either in qualitative or quantitative agreement with recent observations and mea- surements in experimental propelled particle systems. Two experimental systems are specifically considered: The actin gliding assay, where molecular motors, immobilized on a substrate, propel actin filaments, and the polar vibrated disk assay, where disk-like gran- ular particles with a built-in polar asymmetry are driven by vertical vibrations. By means of various theoretical tools including rule-based automaton models, numerical solution of Newtonian equations of motion, and kinetic theory, the following central new findings and insights within the field of propelled particle systems were discovered:
Anomalously strong curvature fluctuations of single actin filaments moving in the glid- ing assay arise from two different interactions with the molecular motors. The motors either “Push” or “Hold” locally, giving rise to persistent movement or localized jams, which, in turn, lead to pronounced curvature kinks. Interestingly, both excitation and relaxation of curvature originates from these interactions, and it is shown that the impact of thermal fluctuations on the curvature distribution is negligible compared to these active fluctua- tions.
At high densities, filaments in the gliding assay form beautiful patterns of coherent motion such as clusters, swirls and waves. These patterns were shown to be triggered by local “ferromagnetic”-like alignment interactions between the filaments. In the later stages of pattern formation, hydrodynamic interactions become relevant. Coherently moving clus- ters induce a back-flow in the overlying fluid, mediating a ‘repulsive’ cluster–cluster or cluster–boundary interaction.
With the addition of crosslinking molecules to the gliding assay at high filament densities, an absorbing state comprised of open and closed rings can form. The assembly dynamics is fully understood in terms of a competition between merging events of filaments and filament growth that freezes the curvature. Specifically, by means of an appropriate particle-based model, the statistical properties of the system, such as the characteristics of the ring radii distribution and the ratio of open to closed rings as a function of the system’s noise level, was qualitatively reproduced.
The vibrated polar disk assay has a size of only about 20 particle diameters —a fact which precludes definitive conclusions on the nature of the underlying phase transition to a polarized state of coherent motion. By means of a microscopic model, the experimental single particle motion, the details of binary collisions and the collective dynamics in the confined geometry were quantitatively reproduced. Specifically, we matched all properties of the persistent random walk such as average speed, amplitude and spectrum of orien- tational and velocity fluctuations. Agreement between the characteristics of the collisions described by the model and those measured in the experiment, were verified by comparing the probability distributions for collision extension and time. Finally, collective properties were studied and likened by considering the average polarization within some restricted area, again confirming a very good agreement between model and experiment. The quan- titive match of all details of the experimental dynamics allowed us to use our models to scale up the vibrated polar disk assay in-silico, proving that a long-range polar ordered state would develop in the vibrated disk assay in the absence of boundaries.
Moreover, a generic automaton model for propelled particles was employed to analyze the onset of collective motion in time. The central finding is that collective motion close to the transition is induced by nucleation of a cluster of sufficiently large mass, and not by a wide-spread coarsening process of polarized domains.
In particle-conserving, propelled particle systems wave-like patterns generically emerge close to the phase boundary. Considering kinetic theory, there are clear indications that wave-like patterns cannot exist in the absence of particle conservation.
Moreover, kinetic theory for propelled particle systems is found to be restricted to weak aligning systems, whereby post-collision angles are only slightly reduced with respect to pre-collision orientations. This conclusion was obtained by extending kinetic theory for propelled particle systems with respect to significant qualitative features of collisions ob- served in experimental propelled particle systems. Since kinetic theory predicts disorder for regimes in which real (experimental) systems exhibit order, the inherent restrictions of kinetic theory to weak aligning systems could be elucidated.
Furthermore, using a set of Newtonian equations of motion for propelled, dissipative col- loids, we found that near the phase boundary, the microscopic states from which collective motion develops are not free of orientational correlations, i.e. the assumption of molecular chaos that is commonly applied in kinetic theory is not valid for propelled particle sys- tems at the onset of collective motion. Most importantly, the ensuing correlations at the onset are —for the aforementioned system— a qualitative prerequisite for kinetic theory to predict a phase transition to collective motion at all. This conclusion was made pos- sible by quantitatively connecting the details of the microscopic collision process with the mesoscopic kinetic description, in turn allowing for a quantitative test of the predictions of kinetic theory. If the aforementioned correlations are implemented into the kinetic ap- proach, the prediction of kinetic theory for the phase boundary quantitatively coincides with the one obtained from the underlying microscopic Newtonian particle dynamics in the regime of low packing fractions.
Finally, an appropriate particle-based model for propelled particle systems at large packing fractions was analyzed in detail. Upon characterizing the degree of bond orienta- tional and translational order, the following generic states were identified: An unpolarized active crystal state with long-ranged orientational and translational order, and a polycrys- talline state, which coherently flows and is composed of hexagonal domains. It was shown that the underlying ordering transitions are defect–mediated.
Most of the results of this thesis exemplify the importance of a one-to-one comparison between theoretical models and experimental studies in order to advance our understanding of propelled particle systems. Rather than adopting a generic approach, the central goal of this thesis is to develop both a bottom-up modeling framework as well as an experiment- specific one. This formulation advances our understanding of the physics of two specific experimental propelled particle systems and hopefully will serve as a starting point for investigations of the dynamics in other active systems such as moving cells and bacteria.
|
546 |
Testing data assimilation methods in idealized models of moist atmospheric convectionWürsch, Michael 02 December 2013 (has links) (PDF)
No description available.
|
547 |
Design, characterization and functionalization of DNA materialsSchiffels, Daniel 19 November 2013 (has links) (PDF)
DNA wird seit einigen Jahren zur Herstellung von Strukturen mit Nanometer Präzision genutzt. Mittels der am häufigsten verwendeten Techniken, “Tile” und “ DNA Origami”, wurden verschiedenste DNA Objekte wie unter anderem DNA Kristalle, DNA Nanotubes, gebogene und verdrehte Zylinder und selbst komplexe 3D Strukturen hergestellt. Aufgrund der einzigartigen Kontrolle über die räumliche Anordnung von DNA Molekülen wird DNA Nanotechnologie heute in verschiedensten Forschungsgebieten wie struktureller Biologie, Nanomedizin, Einzel-Molekül Detektion oder Plasmon-Forschung verwendet.
In dieser Arbeit wird systematisch die Biege-Steifigkeit (Persistenz Länge) von DNA Nanotubes (HX-Tubes) als Funktion des Umfangs untersucht. Dazu wurden mikrometer- weite thermische Nanotube Fluktuationen mittels Fluoreszenz Mikroskopie analysiert (A,B). Zusätzlich wurden intrinsische und thermische Nanotube Verdrehungen durch Anbindung von Gold-Nanopartikeln (AuNP) und Transmissions Elektronen Mikroskopie (TEM) sicht- bar gemacht (C). Aus diesen Messungen ergibt sich, dass die Peristenz Länge sich pro- portional zum Flächenträgheitsmoment des Nanotube Querschnitts verhält, intrinsische Verdrehungen nur auftreten, wenn sie durch die DNA Sequenzen vorgegeben sind und dass thermische Verdrehungen u ̈ber sehr viel kürzere Distanzen als die Persistenz Länge auftreten. Des weiteren wurde ein DNA Nanotube Elastizitäts-Modell hergeleitet, das Ver- formungen von doppelstängiger DNA sowie von Cross-Overn berücksichtigt und gezeigt, dass alle Messungen in guter Übereinstimmung mit dem Modell sind.
Um ein besseres Verständnis für den Zusammenhang zwischen Persistenz Länge und dem Aufbau von DNA Nanotubes auf der Ebene einzelner DNA Moleküle zu gewinnen wurden die thermischen Verbiegungen von verschiedenen sechs-Helix-Tubes mit unterschiedlichen DNA Architekturen untersucht. Die Ergebnisse zeigen, dass das Anordnen von mehreren Cross-Overn innerhalb einer Tube Querschnittsfläche sowie die Verringerung der Dichte von DNA Cross-Overn die Persistenz Länge verringert. Die Ergebnisse werden im Rahmen des zuvor hergeleiteten Elastizitäts Modell diskutiert.
Es wurden verschiedene Strategien zur Herstellung von gebogenen und verdrehten DNA Nanotubes entwickelt. Biegung und Drehung wurden durch gezielte Einfügung oder Auslassung von Basenpaaren, speziell programmierten Faltungswegen, oder spezielle Anordnung von komplementären DNA Sequenzen innerhalb der Nanotubes kontrolliert. Nanotube Konturen wurden mittels TEM, Rasterkraftmikroskopie (AFM), UV-Absorption, sowie stochastischer optischer Rekonstruktionsmikroskopie (STORM) charakterisiert. Die Mes- sungen zeigen, dass gebogene Nanotubes meist geschlossene Ringe bilden und Nanotubes mit Biegung und Drehung helix-förmig sind (D).
Es wird gezeigt, dass Anbindung des organischen Farbstoffs Cy3 an einen oder mehrere
DNA Stränge der HX-Tubes ebenfalls zur Ausbildung von Helix-förmigen Nanotubes führt (E). Ganghöhe und Radius der Nanotubes mit Cy3 Anbindung wurden systematisch in Abhängigkeit der Cy3-Bindungsposition gemessen und das Ergebnis mit einem einfachen Cy3-DNA Bindungsmodell verglichen. Des weiteren wurden die optischen Eigenschaften von Cy3 Moleku ̈len, gebunden an HX-Tubes mittels Fluoreszens-Polaristations-Mikroskopie (FPM) und Fluoreszenslebensdauer Messungen untersucht. Es wurde ein Zusammenhang zwischen Anisotropie (gemessen mittels FPM) und der Orientierung der Cy3 Dipol Achse hergeleitet. Die beobachtete Anisotropie entspricht in diesem Modell einem Winkel von ca. 60° zwischen Cy3-Dipol und DNA Achse.
Es wird gezeigt, dass die Ausbildung von fluoreszenten Silber Clustern, bestehend aus wenigen Atomen (Ag-DNA) innerhalb von einzelsträngigen “DNA hairpins” an der Oberfläche von DNA Nanotubes stattfinden kann (F). DNA Nanotubes mit Ag-DNA Clustern sind fluoreszent und konnten mittels Fluoreszenz Mikroskopie sichtbar gemacht werden. Als Nebenprodukt der Ag-DNA Synthese wurde Aggregation von DNA Nanotubes beobachtet.
Es wurden zwei neue Methoden zur Weiterentwicklung der DNA Origami Methode untersucht: 1) Kristallisierung von rechteckigen DNA Origami Strukturen zu 1D Ketten und 2D Gittern (G) und 2) Anbindung von “Tiles” an einer DNA origami “Schablone”. Die Faltungs-Ausbeute beider Strategien wurde mittels Gel Elektrophorese, TEM und AFM charakterisiert.
Schließlich wird im letzten Kapitel eine Sammlung von Matlab Programmen vorgestellt, die benutzt wurden um DNA Nanotube Kontouren automatisch aus Bild Daten auszulesen, Persistenz Länge zu bestimmen, polarisierte Fluoreszenz Bilder auszuwerten und DNA Sequenzen zu generieren. / In recent years it has been demonstrated, that the sequences of a set of DNA molecules can be specifically programmed to drive their self-assembly into a predesigned nanoscale shape with nanometer precision. The two main techniques, “tiled” assembly and “DNA origami” have been used for the construction of DNA crystals, DNA nanotubes as well as single- and multi-layer DNA objects including cuboids, curved and twisted bundles and even complex 3D geometries such as hollow containers. Because of this unique spatial control, today, DNA nanotechnology is actively used in a wide range of research areas such as structural biology, nanomedicine, single-molecule detection and plasmonics.
We systematically measure the bending stiffness (persistence length) of DNA nanotubes (HX-tubes) as function of their circumference by analyzing micron-scale thermal fluctu- ations using fluorescence video microscopy (A, B). We further characterize intrinsic and thermal HX-tube twist by direct visualization of gold nano particles (AuNP), bound to specific positions of the tubes by electron microscopy (TEM) (C). We find that persistence length scales with the tube’s second moment of inertia, intrinsic twist tends not to be present except when forced by sequence design and thermal twist occurs on lengths much shorter than the persistence length. We show that these results can be understood in terms of a quantitative DNA nanotube elasticity model, which takes the deformations of the DNA duplexes, as well as the strand cross-overs between them into account.
To gain a better understanding of the interplay between the molecular architecture of DNA nanotubes and their micrometer-scale persistence length we study the thermal bending fluctuations of several six-helix-tubes with variations in the density and placement of strand cross-over and backbone nicks. We find that staggering cross-overs in one cross- sectional plane as well as decreasing the overall density of cross-overs significantly decreases persistence length and discuss these results in terms of the previously derived elasticity model.
We present several design strategies for DNA nanotubes with defined intrinsic torsion, intrinsic curvature and combination of both. Curvature and torsion were controlled by ei- ther targeted insertion and deletion of basepairs, specific programming of the folding pathway or specific placement of complementary sequence motifs within the DNA nanotube lattice. We characterize intrinsic tube deformations by TEM, atomic force microscopy (AFM), temperature controlled UV-absorbance and stochastic image reconstruction mi- croscopy (STORM) and show that intrinsically curved tubes predominantly form closed rings (D) and tubes with a combination of curvature and torsion have a helical contour.
We show that the attachment of the organic dye Cy3 to one or several DNA oligonucleotides of HX-tubes can also cause tube deformations (E). We systematically study pitch and radius of the observed helical tube contour as function of Cy3 attachment position and propose a Cy3-DNA binding scheme that depends on the DNA microenvironment of the binding site. We further investigate the optical properties of Cy3 on HX-tubes by fluorescence polarization microscopy (FPM) and fluorescence lifetime measurements. We derive a relation between anisotropy and alignment of Cy3 dipoles. Our model suggests an angle of approximately 60° between Cy3 dipole and DNA axis.
We demonstrate that the self-assembly of fluorescent few-atom silver clusters (Ag-DNA) can be directed to hairpins on the surface of DNA nanotubes as a means of fluorescent labeling (F). We find that Ag-DNA on DNA nanotubes produces bright fluorescence, easily detectable by fluorescence microscopy. However Ag-DNA synthesis also promotes aggre- gation of DNA nanotubes.
We investigate two new methods for the construction of micrometer scale DNA assem- blies based on the DNA origami technique: 1) Crystallization of rectangular DNA origami blocks into 1D and 2D lattices (G) and 2) Growth of DNA tiles on a ribbon shaped DNA origami template with sticky ends. The yield of both methods is estimated by gel electrophoresis, TEM and AFM.
Lastly, we describe a set of Matlab tools that were written and used for automated tube contour digitalization from image data, calculation of persistence length, analysis of FPM data and design of DNA sequences.
|
548 |
Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical latticesScazza, Francesco 23 February 2015 (has links) (PDF)
In dieser Arbeit wird die Erzeugung und Untersuchung wechselwirkender Ytterbium-Quantengase mit zwei elektronischen Orbitalen in optischen Gittern präsentiert. Entartete Fermigase aus Ytterbium oder anderen erdalkaliähnlichen Elementen wurden in jüngster Zeit als Modellsysteme für orbitale Phänomene in der Festkörperphysik herangezogen, wie z.B. die Kondoabschirmung, schwere Fermionen und kolossalen magnetischen Widerstand. Für diese Gase wurde des Weiteren eine hohen SU(N) Symmetrie vorhergesagt, die aus der starken Entkopplung des Kernspins resultiert, und die Erzeugung neuer exotischer Aggregatzustände ermöglicht.
Das SU(N) Hubbard-Modell mit zwei Orbitalen sowie interorbitaler Spinaustauschwechselwirkung lässt sich mit Hilfe der beiden niedrigsten (meta-)stabilen elektronischen Zustände realisieren, welche dabei die Rolle der Elektronen aus unterschiedlichen Orbitalen eines Festkörpers einnehmen. Die Wechselwirkungen in einer entarteten Mischung verschiedener Spinzustände von Yb-173 mit zwei Orbitalen werden durch die Anregung in den metastabilen Zustand in einem zustandsunabhängigen Gitter untersucht. Alle Streukanäle für die zwei Orbitale werden charakterisiert und die SU(N=6)-Symmetrie wird innerhalb der experimentellen Unsicherheiten nachgewiesen. Von herausragender Bedeutung ist der Nachweis einer sehr starken Spinaustauschwechselwirkung zwischen den zwei Orbitalen, wobei der dazugehörige Austauschprozess anhand dynamischen Ausgleichs der Spinpolarizierung zwischen verschiedenen Orbitalen beobachtet wird. Ermöglicht wird dies durch die Implementierung präzisionsspektroskopischer Verfahren sowie die vollständige, kohärente Kontrolle der Besetzung des metasabilen Zustandes. Die Verwirklichung eines SU(N)-symmetrischen Gases mit Spinaustauschwechselwirkung, des grundlegenden Bausteins für orbitalen Quantenmagnetismus, ist ein entscheidender Schritt in Richtung der Simulation von wichtigen Vielteilchenmodellen, wie dem Kondo- Gittermodell. / This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N ) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted.
With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N = 6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.
|
549 |
Towards attosecond 4D imaging of atomic-scale dynamics by single-electron diffractionGliserin, Alexander 04 June 2014 (has links) (PDF)
Many physical and chemical processes which define our daily life take place on atomic scales in space and time. Time-resolved electron diffraction is an excellent tool for investigation of atomic-scale structural dynamics (4D imaging) due to the short de Broglie wavelength of fast electrons. This requires electron pulses with durations on the order of femtoseconds or below. Challenges arise from Coulomb repulsion and dispersion of non-relativistic electron wave packets in vacuum, which currently limits the temporal resolution of diffraction experiments to some hundreds of femtoseconds.
In order to eventually advance the temporal resolution of electron diffraction into the few-femtosecond range or below, four new concepts are investigated and combined in this work: First, Coulomb repulsion is avoided by using only a single electron per pulse, which does not repel itself but interferes with itself when being diffracted from atoms. Secondly, dispersion control for electron pulses is implemented with time-dependent electric fields at microwave frequencies, compressing the duration of single-electron pulses at the expense of simultaneous energy broadening. Thirdly, a microwave signal used for electron pulse compression is derived from an ultrashort laser pulse train. Optical enhancement allows a temporal synchronization between the microwave field and the laser pulses with a precision below one femtosecond. Fourthly, a cross-correlation between laser and electron pulses is measured in this work with the purpose of determining the possible temporal resolution of diffraction experiments employing compressed single-electron pulses. This novel characterization method uses the principles of a streak camera with optical fields and potentially offers attosecond temporal resolution.
These four concepts show a clear path towards improving the temporal resolution of electron diffraction into the few-femtosecond domain or below, which opens the possibility of observing electron densities in motion. In this work, a compressed electron pulse's duration of 28±5 fs full width at half maximum (12±2 fs standard deviation) at a de Broglie wavelength of 0.08 Å is achieved. Currently, this constitutes the shortest electron pulses suitable for diffraction, about sixfold shorter than in previous work. Ultrafast electron diffraction now meets the requirements for investigating the fastest primary processes in molecules and solids with atomic resolution in space and time.
|
550 |
On the obscuration of the growing supermassive black hole populationBuchner, Johannes 14 April 2015 (has links) (PDF)
Aktive Galaxienkerne (AGN) werden durch das Wachstum super-schwere schwarze Löcher, die im Zentrum jeder massiven Galaxie sitzen, betrieben. Da enge Korrelationen ihrer Massen zu Eigenschaften der elliptischen Galaxienkomponente beobachtet werden, und durch ihre extreme Leuchtkraft ist es naheliegend, dass AGN einen wichtigen Baustein von Galaxien bilden. Der erste Schritt, AGN zu verstehen ist es, ihre Häufigkeit zu ermitteln, sowie die Leuchtkraft der Population. Dieses Unterfangen wird dadurch erschwert, dass die meisten AGN von Gas und Staub umgeben sind. Selbst im energiereichen Röntgenbereich, der in dieser Arbeit verwendet wird, wird die intrinsische Strahlung durch Absorption um mehrere Größenordnung verringert.
Die vorliegenden Doktorarbeit untersucht zuerst die Eigenschaften dieser Wolken, im speziellen ihre Geometrie, Säulendichteverteilung und ihr Verhältnis zur Leuchtkraft des AGN. Dazu werden ∼ 300 AGN von der längst-beobachteten Röntgenregion, der Chandra Deep Field South Kampagne verwendet. Eine neue Bayesische Methode zur Spektralanalyse wurde entwickelt, um verschiedene physikalisch motivierte Modelle für den Aufbau der Wolken zu vergleichen. Das Röntgenspektrum reagiert, hauptsächlich dank Compton-Streuung, auf die Gesamtbedeckung der Quelle durch das Gas. Eine detaillierte Analyse zeigt, dass die Wolken mit einer Torus (“Donut”) Form konsistent sind, und sowohl vollständige Bedeckung als auch eine Scheiben-artige Konfiguration ausgeschlossen werden können. Außerdem ist eine weiteren Komponente höherer Dichte notwendig um zusätzlich beobachtete Compton-Reflektion zu erklären. Dies deutet auf eine strukturierte Formation
hin, wie etwa ein Torus mit einem Dichtegradienten.
Die Untersuchung der gesamten AGN-Population inklusive der AGN mit hohen Säulendichten, verlangt eine große Stichprobe mit einem genauen Verständnis für die Stichprobenverzerrung, sowie fortgeschrittene statistische Inferenzmethoden. Diese Arbeit baut auf eine ∼ 2000 AGN große Stichprobe die durch Röntgenemission detektiert wurde, bestehend aus mehrschichtigen Kampagnen aus den CDFS, AEGIS-XD, COSMOS and XMM-XXL Regionen. Die Röntgenspektren wurden im Detail mit einem physikalischen Spektralmodell analysiert, um die intrinsische Leuchtkraft, Rotverschiebung, sowie Säulendichte (N_H) für jedes Objekt zu erhalten, inklusive der Messunsicherheit. Außerdem wurden in dieser Arbeit neue statistische Methoden entwickelt um die richtige Assoziation zu optischen/infraroten Objekten zu finden, und um die Unsicherheiten durch Objekte ohne Pendant, der Rotverschiebungsmessung, sowie der Poissonfehler des Röntgenspektrums in alle Ergebnisse einzubinden.
Einen weiteren wichtigen Beitrag bildet eine Bayesische, nicht-parametrische Methode um die unverzerrte Dichte von AGN in kosmologischen Volumen als Funktion von intrinsischer Leuchtkraft, Rotverschiebung und Säulendichte (N H ) der verbergenden Wolken zu rekonstruieren. Obwohl in dieser Methode lediglich Glattheit verwendet wird, kann dieser Ansatz dieselben Formen der Leuchtkraftverteilung sowie ihre Entwicklung rekonstruieren, die sonst oft in emprischen Modellen verwendet werden, jedoch ohne diese apriori anzunehmen. Im Großen und Ganzen kann die Leuchtkraftverteilung, in allen Rotverschiebungsschalen, als Potenzgesetz mit einem Umbruchspunkt beschrieben werden.
Sowohl die Normalisation als auch der Leuchtkraftumbruchspunkt entwickeln sich über den Lauf des Universums, allerdings zeigen die Daten keine Belege für eine Veränderung der Form der Verteilung. Dies deutet darauf hin, im Gegensatz zu Aussagen vorherigen Studien, dass der Rückkopplungsmechanismus zwischen AGN und beherbergender Galaxie immer gleich funktioniert, und sich nur die Anzahl und Größe der wachsenden Systeme verändert. Die nicht-parametrische Rekonstruktionsmethode verwendet keine Annahmen darüber wie sich z.B. die Häufigkeiten von Säulendichte des verdeckenden Gases mit Leuchtkraft oder Rotverschiebung verändert. Dies erlaubt sehr robuste Schlüsse über den Anteil der
verdeckten AGN (N_H > 10^22 cm −2 ), die 77 +4 −5 % der Population ausmachen sowie den Anteil der Compton-dicken AGN (38 +8 −7 %), die sich hinter enormen Säulendichten (N_H > 10^24 cm −2 ) verbergen. Insbesondere dass der letztere Anteil bestimmt werden konnte, lässt endlich Schlüsse darauf zu, wieviel AGN “verdeckt” wachsen. Außerdem suggeriert es, dass der Torus einen großen Teil des AGN verdeckt. Basierend auf der Leuchtkraft der gesamten AGN Population wurde die Masse, die über den Lauf der Zeit in schwarzen Löchern gesperrt wurde, geschätzt, und die Massendichte der supermassereichen schwarzen Löcher im heutigen Universum vorhergesagt.
Die Rekonstruktion bringt außerdem zu Tage, dass der Anteil der verdeckten AGN (insbesondere der Compton-dünnen AGN) eine negative Leuchtkraftabhängigkeit aufweist, und dass sich diese Abhängigkeit über die Geschichte des Universums entwickelt hat. Dieses Resultat wird in dieser Arbeit im Zusammenhang mit bestehenden Modellen interpretiert und ist möglicherweise ein Nebeneffekt eines nicht-hierarchischen Wachstums von AGN. / Active Galactic Nuclei (AGN) are powered by the growth of super-massive black holes (SMBHs), which can be found at the centre of every massive galaxy. Due to tight scaling relationships of their masses with properties of their host spheroidal components, as well as the massive energy output AGN release, they are thought to play an important role in the formation and evolution of galaxies. The first step to understanding AGN is to determine their prevalence in the Universe, as well as the luminosity output of their entire population. This enterprise is hampered by the fact that most AGN are obscured by thick layers of gas and dust, making them difficult to detect. Even in the energetic X-ray wavelengths employed in this work, the intrinsic radiation of obscured AGN is suppressed by multiple orders of magnitude.
In this work I first study the properties of this obscurer, specifically its geometry, column density distribution and its relation to the AGN luminosity. For this, ∼ 300 AGN from the deepest X-ray field to date, the Chandra Deep Field South survey, are used. I apply a novel Bayesian spectral analysis methodology to distinguish between several physically motivated models for the obscurer. The X-ray spectrum is, mainly due to Compton scattering, sensitive to the covering fraction of the obscurer. A detailed spectral analysis shows that the obscurer is consistent with a torus (“donut”) shape, but complete covering as well as disk-like configurations can be excluded. Furthermore, a high-density component is necessary to explain additional observed Compton-reflection beyond that expected from the line-of-sight obscuration, indicating a structured obscurer such as a torus with a density gradient.
The study of the population of AGN requires a large sample with detailed understanding of the selection effect and sophisticated inference techniques. A X-ray selected sample of ∼ 2000 AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields is analysed in detail. Through Bayesian spectral analysis with a physical model, the intrinsic luminosity, redshift and column density (N H ) is obtained for each source, including their uncertainties. This thesis also develops advanced statistical methodology for choosing the correct counterpart, and propagates the uncertainty from missing counterparts, redshift estimation as well as the Poisson noise from X-ray spectra into all final results.
Another important new contribution is a Bayesian non-parametric technique to reconstruct the unbiased number density of AGN in cosmological volumes as a function of intrinsic luminosity, redshift and column density (N_H). Despite only assuming smoothness, this approach is capable of reproducing the shapes commonly assumed for the luminosity function and its evolution, without assuming them a priori. Overall, the luminosity function appears to be consistent with a double powerlaw at all redshifts studied. Both the normalisation and break luminosity evolve over time, while there is no evidence that the shape changes. This indicates that contrary to previous claims, the feedback mechanism works the same across the history of the Universe, but only the number and luminosity scale of the accreting systems changes.
The non-parametric reconstruction allows the study of the fraction of obscured AGN up to the Compton-thick regime in a very robust way, i.e. without assuming a luminosity or redshift-dependent behaviour a priori. About 77 +4 −5 % of AGN are obscured (N_H > 10^22 cm −2), while 38 +8 −7 % belong to the heavily obscured, elusive Compton-thick class (N_H > 10^24 cm −2). The latter fraction in particular finally constrains the importance of obscured growth phases in the life of accreting SMBHs. Based on the total luminosity output of the AGN population, the mass locked into black holes over cosmic time is estimated, and the mass density of relic SMBHs in the local Universe is predicted, and matches local estimates.
The large fraction of obscured AGN suggests that the obscuring torus must have a large angular extent. The non-parametric reconstruction also finds and characterises a negative luminosity dependence for the fraction of obscured AGN, in particular those that are Compton-thin, which are less prevalent at high luminosities. Additionally, this luminosity dependence appears to evolve with redshift. These findings are discussed in the context of existing models and it is concluded that the observed evolution may be to first order a side-effect of a anti-hierarchical growth of super-massive black holes.
|
Page generated in 0.0378 seconds