• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Biomarkers of Protein Oxidative Damage and Aging by Mass Spectrometry

Yi, Dong-Hui, Chemistry, Faculty of Science, UNSW January 1999 (has links)
The physiologically important free radicals, nitrogen monoxide and superoxide, can combine to form the reactive intermediate peroxynitrite. Peroxynitrite can react with proteins and their constituent amino acids, such as tyrosine, resulting in protein peroxidation, oxidation and nitration. The nitration of proteins, assessed by the analysis of 3-nitrotyrosine, is a proposed index of pathophysiological activity of peroxynitrite. The aim of the work was to investigate the reaction products between peroxynitrite and protein, develop an assay for 3-nitrotyrosine and measure its levels in biological samples. To study the amino acid products arising from the reaction of peroxynitrite and protein, both liquid chromatography (LC) and gas chromatography (GC) combined with mass spectrometry (MS) were adopted. Approaches to 3-nitrotyrosine assay development were first, to take advantage of the intrinsic sensitivity of electron capture negative ionization GC-MS. Secondly, to avoid possible artefactual problems associated with the derivatisation step in GC-MS, an assay for 3-nitrotyrosine based on combined LC-MS-MS was developed. When a selection of peptides was exposed to peroxynitrite under physiological conditions in vitro, the hydrolysis products showed that 3-nitrotyrosine was the major product. Detectable minor products were 3,5-dinitrotyrosine and DOPA. The GC-MS assay was found to be fraught with difficulty due to artefactual formation of 3-nitrotyrosine. In order to quantify and correct for artefact formation, this complication was approached by incorporating a second isotopomer. This method, however, was confounded by large errors that reduced the overall sensitivity. Either negative or zero levels of endogenous 3-nitrotyrosine were found in tested samples after correction for artefact formation. The LC-MS-MS assay was then used to analyse 3-nitrotyrosine levels in a range of biological samples, including human plasma from healthy volunteers, synovial fluid samples from arthritis patients and tissue extracts from a mouse model of amyotropic lateral sclerosis. In contrast to published data, 3-nitrotyrosine levels were found to be below the limit of detection (1 pg/????L, 10 pg o/c) for all samples - a result somewhat consistent with the negative GC-MS data. It is suggested that the high 3-nitrotyrosine levels previously reported in the literature might reflect artefactual generation of 3-nitrotyrosine and that other approaches to assessing pathophysiological nitration should be sought in future.
2

The Study of Biomarkers of Protein Oxidative Damage and Aging by Mass Spectrometry

Yi, Dong-Hui, Chemistry, Faculty of Science, UNSW January 1999 (has links)
The physiologically important free radicals, nitrogen monoxide and superoxide, can combine to form the reactive intermediate peroxynitrite. Peroxynitrite can react with proteins and their constituent amino acids, such as tyrosine, resulting in protein peroxidation, oxidation and nitration. The nitration of proteins, assessed by the analysis of 3-nitrotyrosine, is a proposed index of pathophysiological activity of peroxynitrite. The aim of the work was to investigate the reaction products between peroxynitrite and protein, develop an assay for 3-nitrotyrosine and measure its levels in biological samples. To study the amino acid products arising from the reaction of peroxynitrite and protein, both liquid chromatography (LC) and gas chromatography (GC) combined with mass spectrometry (MS) were adopted. Approaches to 3-nitrotyrosine assay development were first, to take advantage of the intrinsic sensitivity of electron capture negative ionization GC-MS. Secondly, to avoid possible artefactual problems associated with the derivatisation step in GC-MS, an assay for 3-nitrotyrosine based on combined LC-MS-MS was developed. When a selection of peptides was exposed to peroxynitrite under physiological conditions in vitro, the hydrolysis products showed that 3-nitrotyrosine was the major product. Detectable minor products were 3,5-dinitrotyrosine and DOPA. The GC-MS assay was found to be fraught with difficulty due to artefactual formation of 3-nitrotyrosine. In order to quantify and correct for artefact formation, this complication was approached by incorporating a second isotopomer. This method, however, was confounded by large errors that reduced the overall sensitivity. Either negative or zero levels of endogenous 3-nitrotyrosine were found in tested samples after correction for artefact formation. The LC-MS-MS assay was then used to analyse 3-nitrotyrosine levels in a range of biological samples, including human plasma from healthy volunteers, synovial fluid samples from arthritis patients and tissue extracts from a mouse model of amyotropic lateral sclerosis. In contrast to published data, 3-nitrotyrosine levels were found to be below the limit of detection (1 pg/????L, 10 pg o/c) for all samples - a result somewhat consistent with the negative GC-MS data. It is suggested that the high 3-nitrotyrosine levels previously reported in the literature might reflect artefactual generation of 3-nitrotyrosine and that other approaches to assessing pathophysiological nitration should be sought in future.

Page generated in 0.0907 seconds