• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Population structure of Phytophthora infestans in selected central, Eastern and Southern African countries

Pule, Boitumelo Bronwen 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2010. / ENGLISH ABSTRACT: Late blight caused by Phytophthora infestans on potato and tomato causes major economic losses worldwide. Until the 1980s, P. infestans populations outside its centre of origin (either central Mexico or the Andean region) only consisted of one mating type (A1), which prevented the pathogen from reproducing sexually. Pathogen populations outside the centre of origin most likely only consisted of a few genotypes prior to the 1980’s. Pan globally, these genotypes probably first consisted of genotype/s that had mitochondrial DNA (mtDNA) haplotype Ia, which was subsequently replaced by a mtDNA haplotype Ib genotype known as the US-1 lineage. This relative simple population structure of the pathogen changed almost worldwide in the late 1970s and early 1980s, when a second set of migrations took place from the centre of origin. These populations contained both A1 and A2 mating type isolates that consisted of several different genotypes, which were more virulent than the pre-1970s genotypes and resulted in the displacement of these genotypes almost worldwide. Some of the new genotypes were also resistant to metalaxyl, the fungicide that was most effective in controlling late blight. In Sub-Saharan Africa (SSA), the characteristics of P. infestans populations are not well documented in most countries except South Africa, Kenya and Uganda. Previous studies in SSA showed that populations were dominated by the US-1 lineage and its variants. The exceptions were reports of the presence of a few mtDNA haplotype Ia isolates in Rwanda and Ethiopia. The current study aimed to determine the population structure of P. infestans in eight selected SSA countries (Burundi, Kenya, Rwanda, Tanzania, Uganda, Malawi, Mozambique and South Africa), mainly on potato and on a limited scale on tomato and petunia, using ‘old’ markers (mating type determination, glucose-6-phosphate isomerase [Gpi] genotyping, mtDNA haplotyping, DNA fingerprinting with probe RG-57 and metalaxyl sensitivity). Populations were further also genotyped using seven recently published Simple Sequence Repeats (SSRs) markers. This information would help to define the population structure of P. infestans in SSA for the first time on a regional basis, and will also determine whether new migrations have taken place since the last characterization studies took place in 2001. A survey in the eight SSA countries yielded a total of 281 P. infestans isolates, mainly obtained from potato fields (Tanzania, Kenya, Uganda, Rwanda, Burundi, Malawi and South Africa), but also from tomato (Malawi, Mozambique and South Africa) and Petunia ´ hybrida (South Africa) that were characterized. Characterization of subsets of the isolates with the ‘old’ markers (176 isolates for mating type, 281 isolates for mtDNA, 70 isolates for [Gpi] and 49 isolates with restriction fragment length polymorphism analysis with probe RG-57), showed that most of the isolates belonged to the US-1 genotype or its variants (US-1.10 and US-1.11). The exception were isolates that belonged to genotype KE-1 (A1 mating type, mtDNA haplotype Ia, Gpi 90/100 and unique RG-57 genotype) that was identified in two fields in Kenya. Genotype KE-1, based on the ‘old’ marker data, is related to genotypes (RW-1 and RW-2) previously identified in Rwanda, and several Ecuadorean and European genotypes. Metalaxyl sensitivity testing of 64 isolates showed that metalaxyl resistant potato isolates were present in all the countries except Malawi, whereas all the tomato isolates were sensitive. Genotyping of 176 isolates with seven recently published simple sequence repeat (SSR) markers revealed a high number (79) of multi-locus genotypes (MLGs) in SSA. However, when locus D13, which was difficult to score, was excluded only 35 MLGs were identified. When locus D13 was excluded from analyses of molecular variance (AMOVA), (i) there was no significant genetic differentiation between populations from central-east Africa (Burundi, Kenya, Rwanda, Tanzania and Uganda), south-east Africa (Malawi and Mozambique) and South Africa, (ii) the KE-1 population was genetically differentiated (Fst = 0.33; P = 0.001) from the US-1 and US-1.10 populations and (iii) genetic differentiation between populations from potato and tomato was low (Fst = 0.07; P = 0.004). The study has expanded the worldwide genotypic database of P. infestans for SSA. Previously, no populations were characterized from Burundi, Malawi and Mozambique. The characterization work showed that migrations seem unlikely to have taken place in SSA, or if these did occur, it was on a very limited scale. The more severe epidemics in some SSA countries could be due to the presence of metalaxyl resistance. Furthermore, the occurrence of mutations or mitotic recombination might have resulted in more aggressive and/or better adapted genotypes, for example the US-1.10 lineage that was only detected in the Western Cape Province of South Africa. The significance of the discovery of the KE-1 genotype in Kenya needs further investigation since it might (i) be an asexual descendent of genotypes (RW-1 and RW-2) that were previously reported in Rwanda in the 1980s, (ii) previously have gone undetected due to the small surveys that were conducted in SSA, (iii) be a new migrant from countries other than SSA or (iv) have been introduced in the very first introductions into Kenya prior to the 1970s. The SSR results from the survey will allow comparison of the SSA late blight populations with other populations worldwide through the EucaBlight database in future studies. / AFRIKAANSE OPSOMMING: Laatroes, veroorsaak deur Phytophthora infestans op aartappel en tamatie, veroorsaak groot ekonomiese verliese wêreldwyd. Phytophthora infestans populasies buite hul kern van oorsprong (óf sentraal Meksiko óf die Andes area), het tot die 1980’s slegs uit een paringstipe (A1) bestaan, wat verhoed het dat die patogeen geslagtelik vermeerder. Patogeenpopulasies buite die kern van oorsprong, het heel moontlik vóór die 1980’s slegs uit ‘n paar genotipes bestaan. Wêreldwyd, het hierdie genotipes moontlik aanvanklik uit genotipe(s) bestaan wat mitokondriale DNS (mtDNS) haplotipe Ia bevat het, wat later met ‘n mtDNS haplotipe Ib genotipe, bekend as die US-1 genotipe, vervang is. Hierdie relatiewe eenvoudige populasiestruktuur van die patogeen, het omtrent wêreldwyd in die láát 1970’s en vroeë 1980’s verander, toe ‘n tweede stel migrasies vanaf die patogeen se kern van oorsprong plaasgevind het. Hierdie populasies het beide A1 en A2 paringstipe isolate ingesluit, wat uit verskeie verskillende genotipes bestaan het, wat meer virulent as die vóór-1970’s genotipes was, en wat die verskuiwing van hierdie genotipes omtrent wêrelwyd tot gevolg gehad het. Sommige van die nuwe genotipes was ook weerstandbiedend teen metalaksiel, die fungisied wat mees effektief in die beheer van laatroes was. Die kenmerke van P. infestans populasies is nie goed in die meeste lande in Sub- Sahara Afrika (SSA) gedokumenteer nie, behalwe vir Suid-Afrika, Kenia en Uganda. Vorige studies in SSA het aangedui dat populasies deur die US-1 genotipe en sy variante gedomineer word. Die uitsonderings was aantekeninge oor die teenwoordigheid van ‘n paar mtDNS haplotipe Ia isolate in Rwanda en Etiopië. Die huidige studie was daarop gemik om die populasiestruktuur van P. infestans in agt geselekteerde SSA lande (Burundi, Kenia, Rwanda, Tanzanië, Uganda, Malawi, Mosambiek en Suid-Afrika), hoofsaaklik op aartappel en op ‘n beperkte skaal op tamatie en petunia, vas te stel, deur die gebruik van ‘ou’ merkers (paringstipe-bepaling, glukose-6-fosfaat isomerase [Gpi] genotipering, mtDNS haplotipering, DNS fingerafdrukke met RG-57 en metalaksielsensitiwiteit). Die genotipe van populasies is verder ook bepaal deur gebruik te maak van sewe onlangs-gepubliseerde “Simple Sequence Repeats (SSRs)” merkers. Hierdie inligting sal help om die populasiestruktuur van P. infestans in SSA vir die eerste keer op ‘n streeksbasis vas te stel, en sal ook bepaal of nuwe migrasies sedert die laaste karakteriseringstudies wat in 2001 uitgevoer is, plaasgevind het. ‘n Opname in die agt SSA lande, het ‘n totaal van 281 P. infestans isolate opgelewer, hoofsaaklik vanaf aartappellande (Tanzanië, Kenia, Uganda, Rwanda, Burundi, Malawi en Suid-Afrika), maar ook vanaf tamatie (Malawi, Mosambiek en Suid- Afrika) en Petunia ´ hybrida (Suid-Afrika) wat gekarakteriseer is. Karakterisering van geselekteerde isolate met die ‘ou’ merkers (176 isolate vir paringstipe, 281 isolate vir mtDNS, 70 isolate vir Gpi en 49 isolate met restriksiefragment-lengte-polimorfismeanalise met RG-57), het aangetoon dat die meeste van die isolate aan die US-1 genotipe of sy variante (US-1.10 en US-1.11) behoort het. Die uitsondering was isolate wat tot die genotipe KE-1 behoort het (A1 paringstipe, mtDNS haplotipe Ia, Gpi 90/100 en unieke RG-57 genotipe) wat in twee velde in Kenia geïdentifiseer is. Genotipe KE-1, gebaseer op die ‘ou’ merkerdata, is aan genotipes (RW-1 en RW-2) verwant, wat voorheen in Rwanda, en verskeie Ekwadoreaanse en Europese lande geïdentifiseer is. Metalaksielsensitiwiteitstoetsing van 64 isolate het aangetoon dat metalaksiel-weerstandbiedende aartappel-isolate in al die lande teenwoordig was, behalwe vir Malawi, terwyl al die tamatie-isolate sensitief was. Genotipering van 176 isolate met sewe onlangs gepubliseerde “Simple Sequence Repeat” (SSR) merkers, het ‘n hoë aantal (79) multilokus genotipes (MLGs) in SSA aangedui. Met die uitsluiting van lokus D13, wat moeilik was om te evalueer, is slegs 35 MLGs egter geïdentifiseer. Met die uitsluiting van lokus D13 uit die analise van molekulêre variansie (AMOVA), was (i) daar geen betekenisvolle genetiese differensiasie tussen populasies van sentraal-oos Afrika (Burundi, Kenia, Rwanda, Tanzanië en Uganda), suid-oos Afrika (Malawi en Mosambiek) en Suid-Afrika nie, (ii) die KE-1 populasie geneties (Fst = 0.33; P = 0.001) van die US-1 en US-1.10 populasies gedifferensieerd en (iii) genetiese differensiasie tussen populasies vanaf aartappel en tamatie laag (Fst = 0.07; P = 0.004). Die studie het die wêreldwye genotipe-databasis van P. infestans vir SSA uitgebrei. Voorheen is geen populasies vanuit Burundi, Malawi en Mosambiek gekarakteriseer nie. Die karakteriseringswerk het aangetoon dat die waarskynlikheid klein is dat migrasies in SSA plaasgevind het, of indien dit wel plaasgevind het, dit op ‘n baie beperkte skaal plaasgevind. Die meer ernstige epidemies in sommige SSA lande kan die gevolg wees van die teenwoordigheid van metalaksiel-weerstand. Die voorkoms van mutasies of mitotiese rekombinasie kon verder meer aggressiewe en/of beter aangepaste genotipes tot gevolg gehad het, byvoorbeeld die US-1.10 genotipe wat slegs in die Westelike Kaapprovinsie van Suid-Afrika waargeneem is. Die betekenis van die ontdekking van die KE-1 genotipe in Kenia benodig verdere ondersoek aangesien dit (i) ‘n ongeslagtelike afstammeling van genotipes (RW-1 en RW-2) mag wees wat voorheen in die 1980’s in Rwanda aangeteken is, (ii) voorheen nie waargeneem is nie weens die klein opnames wat in SSA uitgevoer is, (iii) ‘n nuwe genotipe van lande buite die SSA kan wees of (iv) ingebring is tydens die heel eerste inkoms in Kenia vóór die 1970’s. Die SSR resultate van die opname sal vergelykings tussen die SSA laatroespopulasies en ander populasies wêreldwyd toelaat, deur gebruik te maak van die EucaBlight databasis in toekomstige studies.

Page generated in 0.1006 seconds