• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception et réalisation de cristaux photoniques et de réseaux de diffraction pour les cellules photovoltaïques silicium en couches ultra-minces

Meng, Xianqin 15 October 2012 (has links) (PDF)
Conception et réalisation de cristaux photoniques et de réseaux de diffraction pour les cellules photovoltaïques silicium en couches ultra-minces Ce travail de thèse est consacré au piégeage de la lumière par des cristaux photoniques (CP) et des réseaux de diffraction. L'objectif consiste à intégrer de telles structures dans des cellules solaires à couches ultra-minces de silicium, afin d'augmenter leur rendement de conversion. Nous avons conçu et optimisé des cellules solaires en silicium cristallin (c-Si) assistées par les CP, grâce à la méthode FDTD (Finite Difference Time Domain). En gravant un CP 2D dans la couche active de silicium, l'absorption intégrée sur l'ensemble du spectre est augmentée de 50%. Cette amélioration est atteinte en combinant des modes de Bloch lent et des résonances Fabry-Perot. Afin de réaliser de telles cellules solaires, nous avons développé une filière technologique combinant insolation holographique, gravure ionique réactive et gravure ICP (Inductively Coupled Plasma). Nous avons étudié l'influence des paramètres de ces procédés sur la structuration réalisée. Enfin, les caractéristiques optiques et électriques de ces objets ont été mesurées par nos collaborateurs de l'IMEC, en Belgique. Les mesures d'absorption sont en bon accord avec les prédictions théoriques. De plus, l'absorption intégrée est peu sensible à l'angle d'incidence de la lumière solaire. La cellule solaire structurée comme un CP 2D présente finalement un courant de court-circuit d'environ 15mA/cm², soit 20% plus élevé que dans le cas de la cellule de référence. Par ailleurs, nous avons conçu une cellule solaire en c-Si plus complexe, intégrant des réseaux de diffraction avant et arrière. L'absorption aux grandes longueurs d'onde est augmentée du fait de la période élevée (750 nm) du réseau arrière, tandis que la réflexion en face avant est diminuée du fait de la faible période (250 nm) du réseau avant. Nous avons prédit une augmentation du courant de court-circuit jusqu'à 30m A/cm² pour ce dispositif, en comparaison avec la valeur de 18 mA/cm² correspondant à la cellule de référence non structurée. Ces résultats sont première étape vers le développement de futures générations de cellules solaires assistées par des cristaux photoniques et des réseaux de diffraction.
2

Design and fabrication of photonic crystals and diffraction gratings for ultra thin film Si solar cells

Meng, Xianqin 15 October 2012 (has links) (PDF)
Ce travail de thèse est consacré au piégeage de la lumière par des cristaux photoniques(CP) et des réseaux de diffraction. L'objectif consiste à intégrer de telles structures dans des cellules solaires à couches ultra-minces de silicium, afin d'augmenter leur rendement de conversion. Nous avons conçu et optimisé des cellules solaires en silicium cristallin (c-Si) assistées par les CP, grâce à la méthode FDTD (Finite Difference Time Domain). En gravant un CP 2Ddans la couche active de silicium, l'absorption intégrée sur l'ensemble du spectre est augmentée de 50%. Cette amélioration est atteinte en combinant des modes de Bloch lent et des résonances Fabry-Perot. Afin de réaliser de telles cellules solaires, nous avons développé une filière technologique combinant insolation holographique, gravure ionique réactive et gravure ICP (Inductively Coupled Plasma). Nous avons étudié l'influence des paramètres de ces procédés sur la structuration réalisée. Enfin, les caractéristiques optiques et électriques de ces objets ont été mesurées par nos collaborateurs de l'IMEC, en Belgique. Les mesures d'absorption sont en bon accord avec les prédictions théoriques. De plus, l'absorption intégrée est peu sensible à l'angle d'incidence de la lumière solaire. La cellule solaire structurée comme un CP 2D présente finalement un courant de court-circuit d'environ 15mA/cm², soit20% plus élevé que dans le cas de la cellule de référence. Par ailleurs, nous avons conçu une cellule solaire en c-Si plus complexe, intégrant des réseaux de diffraction avant et arrière. L'absorption aux grandes longueurs d'onde est augmentée du fait de la période élevée (750 nm) du réseau arrière, tandis que la réflexion en face avant est diminuée du fait de la faible période (250 nm) du réseau avant. Nous avons prédit une augmentation du courant de court-circuit jusqu'à 30m A/cm² pour ce dispositif, en comparaison avec la valeur de 18 mA/cm² correspondant à la cellule de référence non structurée. Ces résultats sont première étape vers le développement de futures générations de cellules solaires assistées par des cristaux photoniques et des réseaux de diffraction.
3

Design and fabrication of photonic crystals and diffraction gratings for ultra thin film Si solar cells / Conception et réalisation de cristaux photoniques et de réseaux de diffraction pour les cellules photovoltaïques silicium en couches ultra-minces

Meng, Xianqin 15 October 2012 (has links)
Ce travail de thèse est consacré au piégeage de la lumière par des cristaux photoniques(CP) et des réseaux de diffraction. L’objectif consiste à intégrer de telles structures dans des cellules solaires à couches ultra-minces de silicium, afin d’augmenter leur rendement de conversion. Nous avons conçu et optimisé des cellules solaires en silicium cristallin (c-Si) assistées par les CP, grâce à la méthode FDTD (Finite Difference Time Domain). En gravant un CP 2Ddans la couche active de silicium, l’absorption intégrée sur l’ensemble du spectre est augmentée de 50%. Cette amélioration est atteinte en combinant des modes de Bloch lent et des résonances Fabry-Perot. Afin de réaliser de telles cellules solaires, nous avons développé une filière technologique combinant insolation holographique, gravure ionique réactive et gravure ICP (Inductively Coupled Plasma). Nous avons étudié l’influence des paramètres de ces procédés sur la structuration réalisée. Enfin, les caractéristiques optiques et électriques de ces objets ont été mesurées par nos collaborateurs de l’IMEC, en Belgique. Les mesures d’absorption sont en bon accord avec les prédictions théoriques. De plus, l’absorption intégrée est peu sensible à l’angle d’incidence de la lumière solaire. La cellule solaire structurée comme un CP 2D présente finalement un courant de court-circuit d’environ 15mA/cm², soit20% plus élevé que dans le cas de la cellule de référence. Par ailleurs, nous avons conçu une cellule solaire en c-Si plus complexe, intégrant des réseaux de diffraction avant et arrière. L’absorption aux grandes longueurs d’onde est augmentée du fait de la période élevée (750 nm) du réseau arrière, tandis que la réflexion en face avant est diminuée du fait de la faible période (250 nm) du réseau avant. Nous avons prédit une augmentation du courant de court-circuit jusqu’à 30m A/cm² pour ce dispositif, en comparaison avec la valeur de 18 mA/cm² correspondant à la cellule de référence non structurée. Ces résultats sont première étape vers le développement de futures générations de cellules solaires assistées par des cristaux photoniques et des réseaux de diffraction. / Gratings are considered. The goal is to integrate such structures into ultra-thin film silicon photovoltaic solar cells, with a view to improve their conversion efficiency. First, a PCs assisted ultra-thin film crystalline silicon (c-Si) solar cell is designed optimized by using the Finite Different Time Domain (FDTD) approach. An increase over50% is achieved for the absorption, as integrated over the whole spectral range, by patterning a 2D PCs in the active Si layer. This enhancement is achieved by combining Slow Bloch modes and Fabry-Perot modes. In order to fabricate such solar cells, we developed a process based on Laser Holographic Lithography, Reactive Ion Etching and Inductivity Coupled Plasma etching. We have investigated the influence of the parameters taking part in these processes on the obtained patterns. Finally the optical and electrical properties of the devices have been characterized by our co-workers at IMEC, Belgium. Absorption measurements are in good agreement with the theoretical simulations. Moreover, the integrated absorption is tolerant with regard to the sunlight angle of incidence. The final fabricated 2D PCs patterned solar cell exhibits a 20% higher short circuit current (Jsc = 15mA/cm2) than the reference. Additionally, a more complex thin film c-Si solar cells integrating front and back diffraction gratings has been designed. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. A short-circuit current increase up to 30 mA/cm² is predicted for this device, far above the 18 mA/cm² value for the unpatterned reference These are first steps towards the development of a future generation of PC and diffraction grating assisted solar cells.
4

Cristaux photoniques pour le contrôle de l'absorption dans les cellules solaires photovoltaïques silicium ultraminces

Gomard, Guillaume 08 October 2012 (has links)
La technologie photovoltaïque se caractérise par sa capacité à réduire constamment le coût de l’électricité délivrée, notamment grâce aux innovations technologiques. Un pas important a été franchi dans ce sens grâce à la mise en place d’une filière utilisant des couches minces, réduisant significativement la quantité de matériau actif nécessaire. Aujourd’hui, ces efforts se poursuivent et des couches semi-conductrices ultraminces voient le jour. Du fait de leur faible épaisseur, ces couches souffrent d’une faible absorption de la lumière, ce qui limite le rendement de conversion des cellules. Pour répondre à ce problème, les concepts issus de la nano-photonique peuvent être employés afin de contrôler la lumière à l’échelle des longueurs d’onde mises en jeu. Dans ce contexte, nous proposons de structurer la couche active des cellules solaires en cristal photonique (CP) absorbant. Cette nano-structure périodique assure simultanément une collection efficace de la lumière aux faibles longueurs d’onde et un piégeage des photons dans la couche active (ici en silicium amorphe hydrogéné) pour les longueurs d’onde situées près de la bande interdite du matériau absorbant. Dans le cadre de cette étude, des simulations optiques ont été utilisées de manière à optimiser les paramètres du CP, engendrant ainsi une augmentation de l’absorption de plus de 27% dans la couche active sur l’ensemble du spectre utile, et à établir des règles de design en vue de la fabrication des cellules structurées. Les principes physiques régissant leurs propriétés optiques ont été identifiés à partir d’une description analytique du système. Des mesures optiques réalisées sur les échantillons structurés, ont conforté les résultats de simulation et mis en évidence la robustesse de l’absorption de la cellule à l’égard de l’angle d’incidence de la lumière et des imperfections technologiques. Des simulations opto-électriques complémentaires ont démontré qu’une augmentation du rendement de conversion est réalisable, à condition d’introduire une étape de passivation de surface appropriée dans le procédé de fabrication de ces cellules. / The photovoltaic technology is pursuing its constant effort for lowering the price of the electricity delivered, notably thanks to the technological innovations. The use of thin-films based solar cells was an important step towards that direction since it enabled to decrease the amount of active material needed. Recently, ultrathin semi-conductor layers have emerged. Due to their limited thickness, those layers are suffering from a weak absorption of the incoming light which degrades the conversion yield of the resulting cells. To tackle this issue, nano-photonic concepts may offer well-suited solutions to handle the light at the wavelength scale. In this context, we propose to pattern the active layer of solar cells as an absorbing photonic crystal (PC). This periodical nano-structure ensures simultaneously an efficient collection of the light at low wavelengths, together with an appropriate method for trapping photons inside the active layer for the wavelengths close to the material bandgap, which in our case consists in hydrogenated amorphous silicon. In the framework of this study, optical simulations were used to optimize the PC parameters so as to provide a significant (+27% in the sole active layer) absorption increase over the whole spectrum considered and guidelines for the fabrication of the patterned cells. The physics principles ruling their optical properties were identified out of an analytical description of the system. Optical measurements carried on the patterned samples confirmed the simulation results and highlighted the robustness of the overall absorption with regards to the angle of incidence of the light and technological imperfections. In addition, opto-electrical simulations revealed that an increase of the conversion yield can be expected, provided that an appropriated surface passivation step is introduced in the fabrication process.
5

Advanced photonic crystal assisted thin film solar cells : from order to pseudo-disorder / Photovoltaïques à cellules solaires en couches minches avancées à cristaux photoniques : de l'ordre au pseudo-désordre

Ding, He 29 January 2016 (has links)
Dans les cellules solaires en couches minces de silicium, il est important de maximiser l'efficacité d'absorption, notamment afin d'atteindre une densité de courant de court-circuit (Jsc) suffisante. Pour atteindre cet objectif, nous avons développé des stratégies de piégeage de la lumière à base de cristaux photoniques (CP) simplement périodiques et des structures plus complexes, pseudo-désordonnées. Ce travail vise à intégrer de telles structures dans des cellules solaires en couches minces de silicium cristallin (c-Si). Tout d'abord, un CP à maille carrée de trous cylindriques ou de nano-pyramides inversées ont été intégrés dans cellules solaires à hétérojonction a-Si:H/c-Si en couches minces. L'absorption dans la seule couche absorbante (c-Si) est optimisée grâce à des simulations numériques utilisant la méthode de différences finies dans le domaine temporel. Le Jsc est augmenté de 56,4% (trous cylindriques) et 104,8% (nanopyramides inversées) par rapport au cas sans motif. Nous avons également examiné des structures plus élaborées, où plus un CP de trous cylindriques est introduit en face arrière. Deuxièmement, nous avons considéré des nanostructures complexes mais réalistes pseudo-désordonné, sur la base de supercellules périodiquement reproduites où les trous sont placés au hasard. Dans de telles structures l'absorption peut être augmentée par rapport à un réseau carré de trous optimisé, par augmentation de la densité spectrale de modes optiques. La simulation basée sur l'analyse rigoureuse couplée et la fabrication par lithographie par faisceau électronique et les technologies de gravure ionique réactive ont été effectués, conduisant à une augmentation de l'absorption nette d'environ 2,1% en théorie, et de 2,7% expérimentalement. Enfin, nous avons mis en place des structures pseudo-désordonnées avec supercellules de tailles différentes, dans les couches c-Si de plusieurs épaisseurs dans la gamme 1-8μm. Les mécanismes d'absorption dans ces structures ont été analysés, à la fois dans les espaces réel et réciproque, en vue de déterminer des critères de conception. En outre, la réponse angulaire de la structure pseudo-désordonnée optimisée est plus stable que celle du réseau carré optimisé, en particulier dans les grandes longueurs d'onde. / In thin film silicon solar cells, it is important to take control of the absorption efficiency, in order to reach a high enough short-circuit current density (Jsc). To reach this goal, we have developed light trapping strategies based on simply periodic photonic crystals (PC) and more complex pattern structures. This work aims at integrating such structures into thin film crystalline silicon (c-Si) solar cells. Firstly, a simply periodic square lattice PC structure of cylindrical holes or inverted nano-pyramids have been considered in a-Si:H/c-Si heterojunction thin film solar cells. The absorption in the sole absorbing layer (c-Si) is considered and optimized in numerical simulations based on the Finite Difference Time Domain method. The Jsc are increased by 56.4% (cylindrical holes) and 104.8% (inverted nano-pyramids) compared to the unpatterned case. We also considered more advanced structures where an additional cylindrical holes structure is introduced in the bottom. Secondly, we have considered complex but realistic “pseudo-disordered” nanostructures, based on periodically reproduced supercells where the holes are randomly shifted. In such structures the absorption could be increased compared with fully optimized square lattice of holes, by increasing the spectral density of optical modes. Simulation based on Rigorous Coupled Wave Analysis and fabrication by electronic beam lithography and reactive ion etching technologies have been performed, leading to a net absorption increase of about 2.1% theoretically, and 2.7% experimentally. Lastly, we have introduced pseudo-disordered structures with supercells of different size, in c-Si layers of several thicknesses in the 1-8μm range. The absorption mechanisms in such structures were analyzed, both in the real and reciprocal spaces, with a view to determine design guidelines. Moreover, the angular response of the optimized pseudo-disordered structure appears to be more stable than in the optimized square lattice of holes periodic case, especially in the long wavelength range.
6

Cristaux photoniques pour le contrôle de l'absorption dans les cellules solaires photovoltaïques silicium ultraminces

Gomard, Guillaume 08 October 2012 (has links) (PDF)
La technologie photovoltaïque se caractérise par sa capacité à réduire constamment le coût de l'électricité délivrée, notamment grâce aux innovations technologiques. Un pas important a été franchi dans ce sens grâce à la mise en place d'une filière utilisant des couches minces, réduisant significativement la quantité de matériau actif nécessaire. Aujourd'hui, ces efforts se poursuivent et des couches semi-conductrices ultraminces voient le jour. Du fait de leur faible épaisseur, ces couches souffrent d'une faible absorption de la lumière, ce qui limite le rendement de conversion des cellules. Pour répondre à ce problème, les concepts issus de la nano-photonique peuvent être employés afin de contrôler la lumière à l'échelle des longueurs d'onde mises en jeu. Dans ce contexte, nous proposons de structurer la couche active des cellules solaires en cristal photonique (CP) absorbant. Cette nano-structure périodique assure simultanément une collection efficace de la lumière aux faibles longueurs d'onde et un piégeage des photons dans la couche active (ici en silicium amorphe hydrogéné) pour les longueurs d'onde situées près de la bande interdite du matériau absorbant. Dans le cadre de cette étude, des simulations optiques ont été utilisées de manière à optimiser les paramètres du CP, engendrant ainsi une augmentation de l'absorption de plus de 27% dans la couche active sur l'ensemble du spectre utile, et à établir des règles de design en vue de la fabrication des cellules structurées. Les principes physiques régissant leurs propriétés optiques ont été identifiés à partir d'une description analytique du système. Des mesures optiques, réalisées sur les échantillons structurés, ont conforté les résultats de simulation et mis en évidence la robustesse de l'absorption de la cellule à l'égard de l'angle d'incidence de la lumière et des imperfections technologiques. Des simulations opto-électriques complémentaires ont démontré qu'une augmentation du rendement de conversion est réalisable, à condition d'introduire une étape de passivation de surface appropriée dans le procédé de fabrication de ces cellules.
7

Nanofils de silicium pour les cellules solaires hybrides

Zhu, Mingxuan 20 December 2013 (has links) (PDF)
Le contexte énergétique actuel est un enjeu sociétal. L'utilisation de l'énergie solaire au travers de cellules solaires photovoltaïques à bas-coût et à haut rendement, est une des voies envisagées pour répondre aux besoins énergétiques. Ce travail de thèse a permis de démontrer la faisabilité de cellules solaires hybrides, basées sur une jonction de type " cœur/coquille " entre des nanofils de silicium obtenus par gravure chimique et du PEDOT polymérisé par voie électrochimique. Les principaux avantages d'une telle structure sont à la fois la simplicité et le faible coût des méthodes utilisées pour la réalisation de la cellule. Les nanofils de silicium, grâce à leur capacité à piéger la lumière, conduisent à des propriétés d'anti-reflet très intéressantes avec notamment des valeurs de réflexion inférieures à 3% sur toute la gamme spectrale du visible. La réalisation de telles jonctions a fait l'objet d'une étude poussée sur les différentes caractéristiques de dépôt du polymère, tels que l'intensité lumineuse, le potentiel appliqué et la durée du procédé. L'influence de ces paramètres sur la mesure I(V) de la cellule solaire hybride complète a également été étudiée. On peut noter en particulier que l'on obtient ainsi une densité de courant de fuite très faible et une résistance de fuite très élevée, permettant d'émettre l'hypothèse d'une bonne passivation des états de surface. Ceci constitue une voie prometteuse pour obtenir un bon transport de charges en polarisation inverse.

Page generated in 0.054 seconds