Spelling suggestions: "subject:"fick anda place operation"" "subject:"fick anda glace operation""
1 |
Automation of depowdering step in binder-jet additive manufacturing : Commissioning of KUKA robotKolluri, Sowjanya January 2017 (has links)
The aim of this thesis is to automate the depowdering step in binder-jet additive manufacturing using KUKA kr6 robot. The major tasks involved in this thesis work are commissioning of the KUKA kr6 robot, plan the actions required for automation process of binder jet considering the scaling factor of green bodies. For this purpose KUKA robot with a standard KUKA compact controller (KRC4) and KUKA system software 8.3 (KSS) has been used. In Peter Corke Matlab toolbox (Matlab toolbox), KUKA kr6 robot model has been simulated to understand forward kinematics problem which shows the study the motion of end effector of robot in space for picking process. These transformations between the Joint coordinate systems and Cartesian coordinate systems give the forward and inverse kinematics. Firstly, a KUKA kr6 robot has been programmed in a KUKA Robot Language (KRL) using an algebraic approach with geometric operator to automate the picking process of green bodies. These are fragile bodies thereby many number of tests have been conducted to improve the program. Also additional effort has been placed to test the customized gripper used for the layered pick and place of the components, customized vacuum cleaner for the vacuum cleaning in between the layers and to consider the scaling factor during the sintering step of the binder jet. Finally, KUKA kr6 robot model has been simulated in Matlab toolbox. The picking point in the space has been simulated to study the forward kinematics and to understand how the robot reaches a position and orientation in space. Cartesian trajectory has been simulated. Also, the Jacobian matrix, its rank and determinant are studied to understand the singularities in KUKA kr6 robot, basing on which the thesis work can be continued and enhanced further.
|
2 |
Návrh robotického pracoviště pro automatické zakládání termostatických hlavic / Design of robotic workstation for automated insertion of thermostatic headsKubovčík, Peter January 2019 (has links)
The objective of this master thesis is to design a robotic work cell for automated insertion of thermostatic heads. The proposed design was based on the comprehensive analysis of the current workplace. By taking the demands of the company and customer into consideration, several possibilities of the robotic work cell design were proposed, from which the most suitable one was chosen and carefully elaborated. During the process of designing, several safety standards had to be taken into consideration in order to mitigate risks. For that purpose, a risk analysis was conducted as well. Using the Siemens Process Simulate software, the proposed robotic work cell concept was verified, including cycle time analysis. The last part of the thesis is an assessment of the initial expenditures of the robotic work cell equipment, as well as the return of the investment calculation. Drawing of the robotic work cell layout is attached to the thesis.
|
3 |
Návrh robotické buňky pro obsluhu vstřikolisů / Design of a Robotic Cell for Injection Molding Machines OperationsFranc, Vladimír January 2019 (has links)
The aim of this thesis is to design a robotic cell for automated injection molding operation. At the beginning of this paper, the input parameters and the assignment are analyzed. This is then followed up by the layout of the workplace, design of its equipment, selection of robots and the design of their end effectors and peripherals with regard to the specified boundary conditions and operator’s safety. The output of this work is a 3D cell model and its simulation model in PLM software Siemens Process Simulate, which verifies the production cycle time.
|
Page generated in 0.0941 seconds