Spelling suggestions: "subject:"pickup anda delivery"" "subject:"pickup anda elivery""
31 |
Résolution d’un problème de collecte et livraison dynamique sur un réseau routier avec temps de parcours variablesCaron, Félix 03 1900 (has links)
Les services de livraison express font face au défi d’optimiser les routes de leurs véhicules alors que ceux-ci circulent dans un réseau routier où les temps de parcours varient en fonction du moment de la journée et où ils doivent répondre à l’arrivée dynamique de requêtes consistant à récupérer et livrer des colis. Notre but ici est de proposer une modélisation et une méthode de type heuristique pour résoudre ce problème. Nous commençons par explorer les travaux menés précédemment au sujet de l’arrivée dynamique des requêtes, des temps de parcours variables selon le moment de la journée et des collectes et livraisons dans les problèmes de tournées de véhicules. Ensuite, nous décrivons le problème de manière formelle sur le graphe du réseau routier avec des requêtes deux-points où l’objectif est de minimiser le temps total de parcours des véhicules et les temps de retard aux points de service et au dépôt. Par la suite, nous détaillons l’implémentation d’une méthode de résolution basée sur la recherche tabou utilisant une structure de voisinage basée sur la réinsertion d’une requête. Cette méthode utilise également la structure Dominant Shortest Path (DSP) qui considère plusieurs chemins alternatifs entre chaque paire de sommets, contrairement à l’approche traditionnelle où un chemin unique est fixé a priori. Finalement, nous testons notre méthode à l’aide de 390 instances générées de manière synthétique afin d’évaluer son efficacité ainsi que l’impact de certains aspects du problème et de la méthode de résolution. Les résultats démontrent une amélioration particulièrement importante due à l’utilisation de la structure DSP. / Express delivery services face the challenge of optimizing the routes of their vehicles while they are moving in a road network where the travel times vary according to the time of day in order to serve dynamic requests which consist in collecting and delivering parcels. Our goal here is to propose a model and a heuristic method to solve this problem. We begin by exploring previous work on the topic of the dynamic arrival of requests, timedependent travel times and pickups and deliveries in vehicle routing problems. Afterwards, we describe the problem formally on the graph of the road network with the objective of minimizing the total travel time of the vehicles and lateness at the service points and at the depot. Then, we detail the implementation of a solving method based on tabu search using a neighbourhood structure based on the reinsertion of a request. This method also uses the Dominant Shortest Path (DSP) structure which considers multiple alternative paths between each pair of vertices, unlike the traditional approach where a single path is fixed a priori. Finally, we test our method using 390 instances generated synthetically in order to evaluate its efficiency as well as the impact of certain aspects of the problem and solution method. The results show a particularly significant improvement due to the use of the DSP structure.
|
32 |
Meta-heuristic Solution Methods for Rich Vehicle Routing ProblemsNguyen, Khanh Phuong 06 1900 (has links)
Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problèmes les plus étudiés en recherche opérationnelle, et ce, en raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux domaines tels que le transport, la logistique, les télécommunications et la production. L'objectif général du VRP est d'optimiser l'utilisation des ressources de transport afin de répondre aux besoins des clients tout en respectant les contraintes découlant des exigences du contexte d’application.
Les applications réelles du VRP doivent tenir compte d’une grande variété de contraintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis considérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse, composée de deux parties, explore certaines extensions du VRP vers ces problèmes.
La première partie de cette thèse porte sur le VRP périodique avec des contraintes de fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pendant lesquels les clients n'ont généralement pas besoin d’être desservi à tous les jours, mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de jours de livraison. Cette généralisation étend l'éventail d'applications de ce problème à diverses activités de distributions commerciales, telle la collecte des déchets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la première partie de cette thèse est le développement d'une méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la population. Les résultats obtenus montrent que la méthode proposée est très performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problème.
La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dépendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problèmes proviennent de la planification des opérations de systèmes logistiques urbains à deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensembles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer les séquences de clients visités par chaque véhicule, et la composante de planification qui vise à faciliter l'arrivée des véhicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison de ces types de décisions dans une seule formulation mathématique et dans une même méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de décisions simultanément, et ce, d'une manière complète et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet, la méthode développée propose des solutions nécessitant moins de véhicules et engendrant de moindres frais de déplacement pour effectuer efficacement la même quantité de travail. Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact négatif sur la congestion et sur l’environnement. / For more than half of century, since the paper of Dantzig and Ramser (1959) was introduced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied problems in operations research due to its methodological interest and practical relevance in many fields such as transportation, logistics, telecommunications, and production. The general goal of the VRP is to optimize the use of transportation resources to service customers with respect to side-constraints deriving from real-world applications.
The practical applications of the VRP may have a variety of constraints, and obviously, the larger the set of constraints that need to be considered, i.e., corresponding to `richer' VRPs, the more difficult the task of problem solving. The needs to study closer representations of actual applications and methodologies producing high-quality solutions quickly to larger-sized application problems have increased steadily, providing significant challenges for the VRP research community. This dissertation explores these extensional issues of the VRP.
The first part of the dissertation addresses the Periodic Vehicle Routing Problem with Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with Time Windows (VRPTW) by extending the planning horizon to several days where customers generally do not require delivery on every day, but rather according to one of a limited number of possible combinations of visit days. This generalization extends the scope of applications to many commercial distribution activities such as waste collection, street sweeping, grocery distribution, mail delivery, etc. The major contribution of this part is the development of a population-based hybrid meta-heuristic in which a set of local search procedures and neighborhood-based meta-heuristics cooperate with the genetic algorithm population evolution mechanism to enhance the solution quality as well as to promote diversity of the genetic algorithm population. The results show that the proposed methodology is highly competitive, providing new best solutions in some large instances.
The second part of the dissertation aims to present, model and solve two rich vehicle routing problems which further extend the VRPTW with time-dependent demands of pickup and delivery, and hard time synchronization restrictions. They are called Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS), respectively. These two problems originate from planning the operations of two-tiered City Logistics systems. The difficulty of these problems lies in handling two intertwined sets of decisions: the routing component which aims to determine the sequences of customers visited by each vehicle, and the scheduling component which consists in planning arrivals of vehicles at facilities within hard time synchronization restrictions. Previously, these issues have been addressed separately. Combining these decisions into one formulation and solution method should yield better results. In this dissertation we propose meta-heuristics that address the two decisions simultaneously, in a comprehensive and efficient way. Experiments confirm the good performance of the proposed methodology compared to the literature, providing system managers with solution requiring less vehicles and travel costs to perform efficiently the same amount of work. In the context of City Logistics systems, our results indicate a reduction in the presence of vehicles on the streets of the city and, thus, in their negative impact on congestion and environment.
|
33 |
Routing and Scheduling with Time Windows: Models and Algorithms for Tramp Sea Cargos and Rail Car-BlocksDaniel, Aang 20 November 2006 (has links)
This thesis introduces a new model formulation to solve routing and scheduling problems, with the main applications in answering routing and scheduling problems faced by a sea-cargo shipping company and a railroad company.
For the work in sea-cargo routing and scheduling, we focus on the tramp shipping operation. Tramp shipping is a demand-driven type of shipping operation which does not have fixed schedules. The schedules are based on the pickup and download locations of profitable service requests. Given set of products distributed among a set of ports, with each product having pickup and download time windows and a destination port, the problem is to find the schedule for a fleet of ships that maximizes profit over a specified time horizon. The problem is modeled as a Mixed Integer Non-Linear Program and reformulated as an equivalent Mixed Integer Linear Program. Three heuristic methods, along with computational results, are presented. We also exploit the special structure enjoyed by our model and introduce an upper-bounding problem to the model. With a little modification, the model is readily extendable to reflect soft time windows and inter-ship cargo-transfers.
The other part of our work deals with train routing and scheduling. A typical train shipment consists of a set of cars having a common origin and destination. To reduce the handling of individual shipments as they travel, shipments are grouped into blocks. The problem is that given sets of blocks to be carried from origins to destinations, construct the most cost effective train routes and schedules and determine block-to-train assignments, such that the number of block transfers (block swaps) between trains, the number of trains used, and some other cost measures are minimized. Incorporating additional precedence requirements, the modeling techniques from the shipping research are employed to formulate a mixed integer nonlinear program for this train routing and scheduling problem. Computational results are presented.
|
34 |
Heuristiky pro kapacitní úlohy kurýrní služby / Heuristics for capacitated messenger problemPřibylová, Lenka January 2013 (has links)
This diploma thesis deals with static and dynamic capacitated messenger problem and its solving with heuristic algorithms. Different variations of the capacitated messenger problem were considered, with a single messenger or multiple messengers, with one depot or multiple depots in case of multiple messengers. Limited time for route realization was another modification that was considered. Modified nearest neighbour method, modified insertion method and modified exchange method were used to solve the problem. The main contribution of the thesis is deriving heuristics for described types of messenger problem and programming the algorithms in VBA (Visual Basic for Applications) in MS Excel. The results of computational experiments indicate that modified nearest neighbour method leads to better outcomes in static multiple messenger problems with a single depot, while modified insertion method is associated with lower values of objective function in static multiple messenger problem with multiple depots. Modified exchange method improves original solutions. Modified insertion method was approved for solving dynamic multiple messenger problems.
|
Page generated in 0.0569 seconds