• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparative histology of human skin.

Asaad, Kamil January 2010 (has links)
There are 5 distinct aspects to this study. (i) Two histological stains for collagen were compared against each other for the first time, namely Herovici's technique and picrosirius-polarization. (ii) Skin samples from embalmed cadaveric tissue from human cadavers were compared against samples taken from surgical patients. (iii) Skin samples were studied from different regions of the body to assess if dermal structure correlates with scarring potential. (iv) Skin samples were sectioned in a plane parallel to the epidermis to gain further insight into dermal structure. (v) A novel basement membrane stain was produced. Type I and type III collagen are important structural constituents of dermis and play a crucial role in wound healing. Only two traditional histological methods are thought to differentiate between them, so avoiding the need for antibodies. These were compared against each other for the first time in order to establish differences in image quality and discrimination between Type I and type III collagen. Neither technique requires antibodies, however picrosirius requires polarisation microscopy. to result in a clearer, consistently reproducible collagen staining pattern than the picrosirius method and more importantly did not require elaborate apparatus to analyze. Additionally other cellular elements were visible. Skin samples for research are often obtained from surgical excision. This clearly limits which tissues are available for comparative study to those areas operated on. Studying samples from embalmed medical school cadavers has the great advantage of studying areas of the body not routinely available from common surgical procedures. It was therefore desirable to assess whether embalmed cadaveric tissues exhibited different properties by virtue of their age and the embalming process compared to fresh surgical specimens, in order to give confidence that studies utilising the former would be equally valid. To test this, 58 skin samples from embalmed medical school cadavers were compared to skin samples from 38 fresh operative specimens. The levels of tissue preservation and processing artefacts were similar in both groups. Embalmed medical school cadavers clearly offer an opportunity to study tissue areas not routinely available during surgery. This is the first time such a comparison has been made. Many things will affect the final appearance of the scar, but the single most important determinant is the body region affected. The most common areas for unfavourable scarring, specifically keloid or hypertrophic scarring have been shown to be the ear, deltoid and sternal areas. To test the hypothesis that there is no difference in histological structure of skin that correlates to body region, comparative histology was undertaken exploring the regional variations of skin characteristics in 58 cadaveric samples. Closely comparable samples were taken from the deltoid (9), abdomen (13), sternum (10), post-auricular (5), earlobe (12) and eyelid (9). Epidermal thickness, epidermal appendage density and collagen fibre orientation were examined and qualitative structural differences were assessed for each region Skin samples were then grouped by both topographical location of the body and scarring potential. Skin samples exhibited qualitative and quantifiable regional variations in the characteristics studied. Epidermal thickness and appendage counts did not correlate with scarring potential. Both however were statistically significantly higher in skin sampled from the head compared to the trunk. Bundles of collagen fibres in the reticular dermis were grouped according to their orientation in relation to the coronal plane; either parallel, oblique or perpendicular. The ratio of oblique to parallel fibres was statistically significantly higher in body areas with poorer scarring prognosis. This corresponds to a more disorganised arrangement of collagen fibres in these areas. Further qualitative understanding of dermal collagen fibres came from perpendicular to conventional histological samples. This new method stained basement membranes purple, cytoplasm was stained greenish-brown and nuclei dark brown. Collagen fibres were either thin and blue or thick and green. This method was compared to PAS staining and although required more preparative steps allows greater identification of other cellular structures.

Page generated in 0.1114 seconds