• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic routes from camphor to longicamphane and picrotoxane derivatives

Cachia, Paul Joseph January 1980 (has links)
Camphor has been functionalized at the C-(8) position by treating (+)-3,3-dibromocamphor with bromine and chlorosulphonic acid. A mechanistic rationalization is proposed for this transformation which accounts for the presence of the minor side products that form during 8- and 9-bromination. (+)-8-Bromo-camphor produced by this method was subsequently used as a key intermediate in sesquiterpenoid synthesis. Approaches to the synthesis of both the longicamphane and picrotoxane carbon frameworks are discussed. Our approach to the synthesis of the longicamphane framework involved intramolecular Michael-addition of 9-oxocampherenone. While investigating a proposed synthesis of 9-oxocampherenone via Meyer-Schuster rearrangement of 8-(3-hydroxy-3-methyl-l-butynyl)camphor ethylene acetal an interesting new reaction occurred providing the polycyclic ring system (+)-6,7-dimethyl-6-(l-oxo-2-methylpropyl)tricycle [4 • 2 • 1 • 0³ ' ⁷] nonan-9-one whose structure was determined by X-ray erystallographic analysis. A mechanism for its formations is proposed. Attempts to synthesize 9-oxocampherenone by allylic oxidation of 9-hydroxycam-pherenone and its ethylene acetal derivative are also discussed. Our synthetic approach to the picrotoxane framework involves Baeyer-Villiger oxidation-translactonization of a suitable copacamphor-type derivative. In our first approach the attempted synthesis of 4-hydroxycopacamphor via intramolecular epoxide cyclization of 8-(1,2-epoxy-3-methylbutyl)camphor provided the tricyclic ketol 1,6-dimethyl-4-(l-hydroxy-2-methylpropyl)tri-cyclo [4 • 3 • 0 • 0³ ' ⁷] nonan-2-one . This 5-membered ring cyclization product was formed exclusively during the reaction. The strategy was revised to exclude 5-membered ring formation; the cyclization would be performed on 8-acetoxycampherenone epoxide. The synthesis of 8-acetoxycampherenol methyl ether is discussed and its potential conversion to 8-acetoxycampherenone epoxide is described. / Science, Faculty of / Chemistry, Department of / Graduate

Page generated in 0.0381 seconds