• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Anticancer Agents Based on the Tetrahydroisoquinoline Alkaloids Containing a Pyrazino[2,1-b]quinazoline-3,6-diones structure

Yang, Ping-Syun 23 August 2010 (has links)
Tetrahydroisoquinoline alkaloids are a class of structurally complex natural products and a huge number of its natural product widely exist in nature which, from the discovery has been more than a century, it compounds with high anti-tumor activity, antibacterial and other physical activity, but also because of its special structure, with low oncentration of biological activity, but these alkaloids are not sold in the market mainly due to a less natural extraction, chemical synthesis method and multi-step, low yield. Therefore, we constructed a combination of tetrahydroisoquinoline alkaloids and the pyrazino [2,1-b] quinazoline-3,6-diones structure of the new compounds, which have the quinazolinone compounds which is the drug synthesis and drug activity on the bond, is also a kind of unique and widely used drug structure, and causes a lot of scientists and drug research interest and discussion, as we develop the motivation.
2

Design of Anticancer Agents Based on the Tetrahydroisoquinoline Alkaloids

Sun, Tsung-Hsien 26 November 2007 (has links)
The tetrahydroisoquinoline alkaloids have been studied thoroughly about their biological and chemical significance over the past 30 years. These natural products show great biological activity, especially ET-743 and saframycin A, makes them promising therapeutics, while their structural complexity and particularity provide challenging synthetic targets. These alkaloids or derivatives show interesting biological activity, but the most important drawback as potential market therapeutics is the minute amount of them available from nature, and the synthetic methods published are inconvenient, difficult, and hard to handle. Herein is described our researches about the tetrahydroisoquinoline alkaloids. Chapter 1 describes relevant background related to the biological significance of these alkaloids, and the currently synthetic studies toward these natural products. Chapter 2 describes our design and synthesis of the analogues based on the anticancer mechanism of the tetrahydroisoquinoline alkaloids, and the biological activities of these analogues. Chapter 3 describes a rapid synthetic route for the common structure of the bis-tetrahydroisoquinoline alkaloids via a controlled mono-Pictet-Spengler cyclization.
3

PREPARATION AND EVALUATION OF DECONSTRUCTION ANALOGS OF 7-DEOXYKALAFUNGIN AS AKT INHIBITORS

Korwar, Sudha 27 July 2012 (has links)
Pyranonaphthoquinone lactones have been recently found to be selective inhibitors of the serine-threonine kinase AKT/PKB. AKT/PKB plays a major role in tumorigenesis, hence these compounds have a great potential to act as anti-cancer agents. They act by a novel bioreductive alkylation mechanism of inhibition of AKT/PKB. In this work, 7-deoxykalafungin, a pyranonaphthoquinone lactone and its deconstruction analogs were synthesized. The structural features of the compounds necessary to inhibit AKT1 potently and selectively were determined. It was observed that compounds with a pyran ring were more potent in inhibiting AKT1. Conversely, flexible compounds were found to be weak inhibitors of AKT1. Also, presence of a lactone ring was found to be favorable in inhibiting AKT1. Of the compounds tested, 7-deoxykalafungin was the most potent inhibitor of AKT1 (IC50 = 0.28 µM against AKT1) and compound 4-61 was the most potent inhibitor of PKA (IC50 = 0.43 µM against PKA).

Page generated in 0.1018 seconds