Spelling suggestions: "subject:"piecewise linear manifold"" "subject:"piecewaise linear manifold""
1 |
Triangulating symplectic manifoldsDistexhe, Julie 22 May 2019 (has links) (PDF)
Le but de cette thèse est d'étudier les structures symplectiques dans la catégorie des variétés linéaires par morceaux (PL). La question centrale est de déterminer si toute variété symplectique lisse $(M,omega)$ peut être triangulée de manière symplectique, au sens où il existe une variété linéaire par morceaux $K$ et une triangulation $h :K -> M$ telle que $h^*omega$ est une forme symplectique constante par morceaux. Nous étudions d'abord un problème plus simple, qui consiste à trianguler les formes volumes lisses. Étant donnée une variété lisse $M$ munie d'une forme volume $Omega$, nous montrons qu'il existe une triangulation lisse $h :K -> M$ telle que $h^*Omega$ est une forme volume constante par morceaux. En particulier, les variétés symplectiques lisses de dimension 2 admettent donc des triangulations symplectiques. Étant donnée une variété symplectique fermée $(M,omega)$, nous montrons ensuite que pour certaines triangulations lisses $h :K -> M$, on peut, par une modification arbitrairement petite du complexe $K$, supposer que la forme $h^*omega$ est de rang maximal le long de tous les simplexes de $K$. Ce résultat permet d'approximer arbitrairement bien toute variété symplectique fermée par une variété symplectique PL. Nous nous intéressons finalement au cas d'une sous-variété symplectique $M$ d'un espace ambiant qui admet lui-même une triangulation symplectique. Nous montrons qu'il est possible de construire un cobordisme entre la sous-variété $M$ considérée et une approximation lisse par morceaux de celle-ci, triangulée par un complexe symplectique. / In this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
2 |
Locally Tuned Nonlinear Manifold for Person Independent Head Pose EstimationFoytik, Jacob D. 22 August 2011 (has links)
No description available.
|
Page generated in 0.0582 seconds