• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scanning probe microscopic study of piezotronics and triboelectrification for their applications in mechanical sensing

Zhou, Yusheng 08 June 2015 (has links)
Scanning probe microscopy was employed to characterize the piezotronic effect in both longitudinal and transverse force sensing modes in CdSe, and GaN nanowires, respectively. Both experimental results show exponential response of their conductivity change to applied forces. Theoretical models are also presented to explain this mechanism and quantify the relationship, where strain induced piezoelectric polarization changes the metal-semiconductor Schottky barrier height. An in-situ method based on SPM is developed to characterize the triboelectric process, including tribo-charge intensity, multi-cycle friction effect, as well as its surface diffusion. Beyond that, effect of external electric field was investigated as an approach to manipulate the polarization and intensity. Finally, a concept of self-powered motion sensing technology is developed and demonstrated experimentally with nanometer resolution, long working distance as well as high robustness. It provides a promising solution for application areas that need ultra-low power consumption devices.
2

Three Dimensional Nanowire Array Piezo-phototronic and Piezo-photo-magnetotronic Sensors

Rai, Satish C 18 December 2015 (has links)
Piezotronic and piezo-phototronic is a burgeoning field of study which emerges from the coupling of intrinsic materials properties exhibited by non-centrosymmetric semiconductors. In the past decade research efforts were mainly focused on the wurtzite family of 1D nanostructures, with major emphasis on ZnO nanowire nanogenerators, MS piezotronic transistors, LEDs and photodetectors mainly integrated on single nanowires. In view of previously known advantages of charge carrier separation in radial heterojunctions, particularly in type-II core/shell nanowires, it can be anticipated that the performance of photosensing devices can be largely enhanced by piezo-phototronic effect. Moreover, the performance metrics can be further improved in an array of nanowires where geometrical feature enabled multiple reflection can efficiently trap incident illumination. The crux of this dissertation lies in the development of 3D type-II core/shell nanowire array based piezo-phototronic device and also to investigate the effect of magnetic field on ZnO nanowire arrays based piezotronic and piezo-phototronic device for new class of sensors. In this regard, prototype piezo-phototronic broadband photodetectors integrated on two material systems, namely type-II CdSe/ZnTe 3D core/shell nanowire arrays and fully wide band gap type-II ZnO/ZnS 3D core/shell nanowire arrays have been developed where the photodetection performance of each device exhibits high sensitivity, fast response and large responsivity. The application of piezo-phototronic effect further improves the device performance by three to four orders of magnitude change numerically calculated from absolute responsivities at multiple wavelengths. A 3D ZnO nanowire array based new class of piezo-photo-magnetotronic sensor is also developed for detection of pressure, illumination and magnetic field suggesting multiple functionality of a single device where more than one effect can be coupled together to exhibit piezo-magnetotronic or piezo-photo-magnetotronic type of device behavior.
3

II-VI Semiconductor Nanowire Array Sensors Based on Piezotronic, Piezo-Phototronic and Piezo-Photo-Magnetotronic Effects

Yan, Shuke 18 May 2018 (has links)
With the rapid progress of nanotechnologies, there are two developing trends for the next generation of sensors: miniaturization and multi-functionality. Device miniaturization requires less power consumption, or even self-powered system. Multi-functional devices are usually based on multi-property coupling effects. Piezoelectric semiconductors have been considered to be potential candidates for self-powered/multi-functional devices due to their piezotronic coupling effect. In this dissertation, ZnO and CdSe nanowire arrays have been synthesized as the piezoelectric semiconductor materials to develop the following self-powered/multi-functional sensors: (1) self-powered gas sensors of ZnO/SnO2, ZnO/In2O3, ZnO/WO3 and CdSe nanowire arrays have been assembled. All these gas sensors are capable of detecting oxidizing gas and reducing gas without any external power supply owing to piezotronic effect which can convert mechanical energies to electrical energy to power the sensors; (2) a self-powered ZnO/ZnSe core/shell nanowire array photodetector has been fabricated. This photodetector is able to detect the entire range of the visible spectrum as well as UV light because of its type II heterostructure. The absolute sensitivity and the percentage change in responsivity of the photodetector were significantly enhanced resulting from the piezo-phototronic effect. The photodetector also exhibited self-powered photodetection behavior; (3) three dimensional nanowire arrays, such as ZnO and ZnO/Co3O4, have been synthesized to investigate piezo-magnetotronic and piezo-photo-magnetotronic effects. Under magnetic field, the magnetic-induced current of ZnO nanowire array decreased as magnetic field increased, and the current difference was magnified by one order of magnitude caused by piezo-magnetotronic effect through applying a stress. In contrast, under UV light illumination, the current response increased with an increment of magnetic field. The current difference was enhanced by at least two orders of magnitude attributed to piezo-photo-magnetotronic effect. Furthermore, ZnO/Co3O4 core/shell structure was employed to further improve the magnetic-induced current difference. This phenomenon projects a potential for multi-functional piezo-magnetotronic and piezo-photo-magnetotronic device development.

Page generated in 0.0277 seconds