• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on scour protection of submarine piggyback pipeline

Yang, S., Shi, B., Guo, Yakun, Yang, L. 08 May 2019 (has links)
Yes / This paper presents the results of laboratory experiments and numerical simulations to investigate the effect of different piggyback pipeline configuration on the morphology of local seabed scour subject to steady currents. Piggyback pipeline configuration investigated includes the commonly used piggyback pipeline, namely a small pipe attached on the top of large pipe and new form of piggyback pipeline proposed in this study in which a small pipe is attached to the large pipe on the upstream and downstream side, respectively. Pressure gradient, drag coefficient, lift coefficient and scour extent around pipelines are measured and analyzed for a range of pipelines and current conditions. Results show that the vortex strength downstream of the commonly used piggyback pipeline is larger than that for a single as well as the new piggyback pipeline under the same condition. This new type piggyback pipeline can effectively reduce the depth and width of the scour hole. In particular, when the ratio of the small pipe diameter over the large pipe diameter is greater than 0.3, little scour under this new type piggyback pipeline occurs for the test conditions. The bed topography downstream of the pipe has also been altered to favor the backfill. / National Natural Science Foundation of China (No. 51279189).
2

Investigation on scour scale of piggyback pipeline under wave conditions

Yang, S., Shi, B., Guo, Yakun 03 May 2019 (has links)
Yes / Laboratory experiments are presented to investigate the effect of different piggyback pipeline configurations on the morphology of local scour under wave conditions. Scour depth and width around the pipelines under regular and irregular waves are measured and analyzed for a range of pipeline and wave conditions; such as the spacing between two pipes (G), gap between the main pipe and seabed (e), pipe diameter (D), wave height (H) and period (T). Experimental results reveal that both the scour depth and width around piggyback pipeline is much larger than those around single pipe under the same wave conditions. Scour depth increases with the increase of the Keulegan-Carpenter (KC) number and decreases with increase of G and e. When e exceeds 0.5D, scour depth tends to approach 0.When spacing G is greater than 0.4D, the destabilization from small pipe to large one is greatly reduced, resulting in scour depth around piggyback pipeline being close to that around single pipe. Similar to scour depth, scour width broadens with the increase of KC number increasing and decreases with the increase of G. Experiments also show that the effect of e on scour depth is greater than that of G under the same test conditions, while their impact on scour width is opposite. Furthermore, scour width under irregular waves is extended slightly compared with regular wave for otherwise the identical conditions. / National Natural Science Foundation (No. 51279189).

Page generated in 0.0385 seconds