• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 8
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 89
  • 44
  • 39
  • 25
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 11
  • 11
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Structural and functional characterization of Pseudomonas aeruginosa major and minor pilins

Nguyen, Ylan 08 May 2015 (has links)
Type IV pili (T4P) are long, fibrous surface appendages involved in attachment, motility, biofilm formation and DNA uptake that are expressed by bacteria and archaea. They are an important virulence factor for a number of bacteria, including Pseudomonas aeruginosa, an opportunistic pathogen that is a common cause of nosocomial infections. T4P are composed mainly of monomers of the major pilin subunit, PilA, although several low abundance proteins called minor pilins are also present. These surface-exposed proteins are potential vaccine candidates, although a more complete understanding of their diversity and function is required for the rational development of a pilus-based vaccine. There are five distinct groups of P. aeruginosa major pilins, which vary based on their sequence and their associated accessory proteins, and two distinct sets of minor pilins, although the roles of the latter in pilus biology are poorly understood. This study focuses on the structural characterization of major and minor pilins and functional implications for pilus assembly and disassembly dynamics. The structural analysis of major pilins from groups III and V revealed specific differences in pilin structure that may affect subunit interactions within the pilus fibre and interactions with their specific accessory proteins and minor pilins. The minor pilins PilVWX were shown to form a putative subcomplex with the adhesin and anti-retraction protein PilY1, which is proposed to prime pilus assembly and thus traffic PilY1 to the bacterial surface. High resolution X-ray crystal structures of the minor pilins FimU and PilE were solved and functional characterization suggested that FimU and PilE are necessary for efficient pilus assembly to stably connect the priming subcomplex to the major pilin subunits. Together, this work has increased our understanding of pilin diversity and defined a concrete role for the minor pilins in pilus assembly. / Thesis / Doctor of Philosophy (PhD) / Pseudomonas aeruginosa is a bacterium that can take advantage of a weakened immune system to cause lethal infections. The first step of infection involves attachment to the host using long sticky fibres called type IV pili. Each fibre is composed primarily of a single protein, the major pilin, but also contains low abundance proteins called minor pilins. Without these proteins, the bacteria can’t attach and cause infections, making pilins excellent vaccine candidates. This study focused on the characterization of major and minor pilins to understand the diversity of these proteins and how these differences might affect pilus assembly. We show that the molecular structure of the major pilin differs between strains although the core architecture is the same, and that the minor pilins are required for initiation of pilus assembly. This work furthers our understanding of the structures and functions of pilin proteins, and provides information helpful for the development of vaccines.
12

Molecular Analysis of Type IV Pilus Assembly in Clostridium perfringens

Hendrick, William Anthony 19 July 2016 (has links)
Clostridium perfringens is a Gram-positive anaerobe capable of causing disease in humans and many animals. C. perfringens is able to move across surfaces in a manner that is dependent on growth and type IV pili. Type IV pili are filaments that can be extended away from the cell by rapid polymerization, and retracted by depolymerization. Furthering the understanding of the initial and final energetic states of the pilins will reveal insights into possible mechanisms of type IV pilus assembly. Toward that end, a pilin was purified from the Gram-negative pathogen Pseudomonas aeruginosa and incorporated into an artificial membrane. The pilin was probed by a solid state nuclear magnetic resonance (ssNMR) technique that can determine the angle and depth of insertion of a helical peptide, as well as fluorescent and electron microscopy. All type IV pilus systems involve the action of an assembly ATPase to provide energy to polymerize the pilus. One proposed mechanism involves two primary proteins: an ATPase and an integral membrane core protein (IMCP). Other type IV pilus proteins are thought to play supportive roles in aiding the traversal of the cell envelope. In order to evaluate this model, the assembly ATPase PilB2 and IMCP PilC2 from C. perfringens were purified and examined for interactions. The evidence presented here suggest that PilB2 and PilC2 do not interact directly, and cannot function as a core assembly apparatus. The carbonic anhydrase (Cpb) from C. perfringens strain 13 was characterized both biochemically and physiologically. Cpb belongs to the type I subclass of the β class and is the first β class enzyme investigated from a strictly anaerobic bacteria. Kinetic analyses revealed a two-step, pingpong, zinc-hydroxide mechanism of catalysis. Analyses of a cpb deletion mutant of C. perfringens strain HN13 showed that Cpb is strictly required for growth when cultured in semi-defined medium and an atmosphere without CO₂. The grew well in nutrient-rich media with or without CO₂ in the atmosphere, although elimination of glucose resulted in decreased production of acetate, propionate, and butyrate. The results suggest a role for Cpb in anaplerotic CO₂ fixation reactions by supplying bicarbonate to carboxylases. / Ph. D.
13

Insights Into the Virulence Determinants of the Emerging Pathogen Kingella kingae

Porsch, Eric Allen January 2012 (has links)
<p><italic>Kingella kingae</italic> is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. The pathogenesis of <italic>K. kingae</italic> disease begins with bacterial adherence to respiratory epithelium in the posterior pharynx. Previous work identified type IV pili as a critical factor for adherence to human epithelial cells. However, the finding that a significant percentage of pharyngeal isolates are non-piliated suggests that <italic>K. kingae</italic> expresses additional surface factors that modulate interactions with host cells and likely play key roles in the pathogenesis of <italic>K. kingae</italic> disease. The purpose of this work was to increase our understanding of <italic>K. kingae</italic> virulence determinants, specifically focused on defining the surface factors and the mechanism involved in <italic>K. kingae</italic> adhesive interactions with epithelial cells. Additionally, this work aimed to further characterize components of the <italic>K. kingae</italic> type IV pilus system, namely the PilC proteins and PilA2. </p><p>We first set out to identify non-pilus factors that influence <italic>K. kingae</italic> interactions with human epithelial cells. Using targeted genetic approaches, we found that insertional inactivation of the gene encoding a predicted trimeric autotransporter protein called Knh (Kingella NhhA homolog) resulted in reduced adherence to human epithelial cells. In addition, using a variety of techniques, including morphological analysis, cationic ferritin staining, and thin section transmission electron microscopy, we established that <italic>K. kingae</italic> elaborates a surface-associated polysaccharide capsule that requires a predicted ABC-type transporter export operon called <italic>ctrABCD for surface presentation. Furthermore, using quantitative human epithelial cell adherence assays, we discovered that the presence of surface capsule interferes with Knh-mediated adherence by non-piliated organisms and that maximal adherence in the presence of capsule requires the predicted type IV pilus retraction machinery, PilT/PilU. Based on the data presented here, we propose a novel adherence mechanism that allows <italic>K. kingae</italic> to adhere efficiently to human epithelial cells while remaining encapsulated and more resistant to immune clearance. </p><p>Having established that <italic>K. kingae</italic> produces a capsule, a large-scale polysaccharide purification technique was developed for capsule analysis of strain 269-492. Biochemical assays determined that the purified material contained thiobarbituric and phenol-sulfuric acid reactive glycosyl residues. In collaboration with the University of Georgia Complex Carbohydrate Research Center (CCRC), mass spectrometry identified galactose, N-acetyl-galactosamine, and Kdo as the major glycosyl components of the polysaccharide preparation. NMR spectroscopy revealed that the purified material contained two distinct polysaccharides with the structures of &rarr;5)&ndash;&beta;&ndash;Gal<italic>f</italic>&ndash;(1&rarr; and &rarr;3)&ndash;&beta;&ndash;GalNAc<italic>p</italic>&ndash;(1&rarr;5)&ndash;&beta;&ndash;Kdo<italic>p</italic>&ndash;(2&rarr;. Further characterization of the polysaccharides expressed by <italic>K. kingae</italic> may have implications for disease prevention strategies. </p><p>Previous work in our lab found that two PilC-like proteins called PilC1 and PilC2 influence type IV pili expression and pilus-mediated adherence. Production of either PilC1 or PilC2 is necessary for <italic>K. kingae</italic> piliation and bacterial adherence. We set out to further investigate the role of PilC1 and PilC2 in type IV pilus-associated phenotypes. We found that PilC1 contains a functional nine amino acid calcium-binding (Ca-binding) site with homology to the <italic>Pseudomonas aeruginosa</italic> PilY1 Ca-binding site and that PilC2 contains a functional 12 amino acid Ca-binding site with homology to the human calmodulin Ca-binding site. Using targeted mutagenesis to disrupt the Ca-binding sites, we demonstrated that the PilC1 and PilC2 Ca-binding sites are dispensable for piliation. Interestingly, we show that the PilC1 site is necessary for twitching motility and adherence to Chang epithelial cells, while the PilC2 site has only a minor influence on twitching motility and no influence on adherence. These findings establish key differences in PilC1 and PilC2 function in <italic>K. kingae</italic> and provide insights into the biology of the PilC-like family of proteins.</p><p>Lastly, we set out to define the role of the PilA2 minor pilin in <italic>K. kingae</italic> strain 269-492. While previous studies indicated that PilA2 is not essential for pilus expression or adherence to epithelial cells, analysis of the pilin locus in a diverse set of clinical isolates revealed that the <italic>pilA2</italic> gene sequence is highly conserved, suggesting it serves an important function. Using targeted mutagenesis we showed that PilA2 is not essential for twitching motility and may or may not be involved in natural competence. Western blot analysis was unable to detect PilA2 in wild type pilus preparations, indicating that it is expressed at a level beneath the assay detection limit or does not localize to the pilus. Additionally, site-directed mutagenesis was used to place <italic>pilA2</italic> under control of the highly active <italic>pilA1</italic> promoter and showed that PilA2 is able to be assembled into fibers that mediate intermediate adherence to epithelial cells. </p><p>Taken together, this work expands our knowledge of the <italic>K. kingae</italic> surface factor repertoire and provides insights into the roles of type IV pilus components. The mechanism of<italic> K. kingae</italic> adherence to epithelial cells is beginning to emerge. These contributions may lead to novel strategies for the prevention of invasive <italic>K. kingae</italic> disease in young children.</p> / Dissertation
14

Functional implications of macromolecular recognition : assembly of adhesive pili and enzyme substrate interactions /

Choudhury, Devapriya. January 2001 (has links)
Thesis (doctoral)--Swedish University of Agricultural Sciences, 2001. / Abstract inserted. Includes bibliographical references.
15

The mechanics of adhesion polymers and their role in bacterial attachment

Zakrisson, Johan January 2015 (has links)
Bacterial resistance to antibiotics is increasing at a high rate in both developing and developed countries. To circumvent the problem of drug-resistant bacterial pathogens, we need to develop new effective methods, substances, and materials that can disarm and prevent them from causing infections. However, to do this we first need to find new possible targets in bacteria to approach and novel strategies to apply.Escherichia coli (E. coli) bacteria is a normal member of the intestinal microflora of humans and mammals, but frequently cause diverse intestinal and external diseases by means of virulence factors, which leads to hundreds of million sick people each year with a high mortality rate. An E. coli bacterial infection starts with adhesion to a host cell using cell surface expressed adhesion polymers, called adhesion pili. Depending on the local environment different types of pili are expressed by the bacteria. For example, bacteria found in the gastrointestinal tract commonly express different pili in comparison to those found in the urinary tract and respiratory tract. These pili, which are vital for bacterial adhesion, thereby serve as a new possible approach in the fight against bacterial infections by targeting and disabling these structures using novel chemicals. However, in order to develop such chemicals, better understanding of these pili is needed.Optical tweezers (OT) can measure and apply forces up to a few hundred pN with sub-pN force resolution and have shown to be an excellent tool for investigating mechanical properties of adhesion pili. It has been found that pili expressed by E. coli have a unique and complex force-extension response that is assumed to be important for the ability of bacteria to initiate and maintain attachment to the host cells. However, their mechanical functions and the advantage of specific mechanical functions, especially in the initial attachment process, have not yet been fully understood.In this work, a detailed description of the pili mechanics and their role during cell adhesion is presented. By using results from optical tweezers force spectroscopy experiments in combination with physical modeling and numerical simulations, we investigated how pili can act as “shock absorbers” through uncoiling and thereby lower the fluid force acting on a bacterium. Our result demonstrate that the dynamic uncoiling capability of the helical part of the adhesion pili modulate the force to fit the optimal lifetime of its adhesin (the protein that binds to the receptor on the host cell), ensuring a high survival probability of the bond.iiiSince the attachment process is in proximity of a surface we also investigated the influence of tether properties and the importance of different surface corrections and additional force components to the Stokes drag force during simulations. The investigation showed that the surface corrections to the Stokes drag force and the Basset force cannot be neglected when simulating survival probability of a bond, since that can overestimate the probability by more than an order of magnitude.Finally, a theoretical and experimental framework for two separate methods was developed. The first method can detect the presence of pili on single cells using optical tweezers. We verified the method using silica microspheres coated with a polymer brush and E. coli bacteria expressing; no pili, P pili, and type 1 pili, respectively. The second method was based on digital holography microscopy. Using the diffraction of semi-transparent object such as red blood cells, we showed that this method can reconstruct the axial position and detect morphological changes of cells.
16

Commensal and pathogenic Escherichia coli use a common pilus for epithelial cell colonization. G-quadruplex interactive compounds as broad spectrum antimicrobials.

Rendon, Maria Auxilio January 2009 (has links)
Diarrheagenic Escherichia coli (E. coli) and Neisseria sp. are Gram-negative pathogens that cause high disease burden, especially in low-income countries.Enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) are a subset of E. coli that can cause disease. The sequence of E. coli genomes revealed the presence of at least 16 putative pili operons, it is still unknown if they encode functional pili. Several adhesins have been described in EPEC; however it is still an enigma if EHEC produces pili. In this dissertation the identification and characterization of a new pilus in EHEC is described. The main pilin subunit is encoded in the yagZ gene (renamed ecpA) and is present in all E. coli. We demonstrate ECP production in 137 (70%) of a total of 197 ecpA+ strains representing different categories of E. coli. Isogenic ecpA mutants of EHEC O157:H7 and fecal commensal E. coli showed significant reduction in adherence to cultured epithelial cells. Adherence levels were not hampered after single mutation of ecpA in EPEC. Only after the removal of the known EPEC adhesins such as BFP and intimin we were able to see significant reduction in adherence levels. In sum, ECP is the first pilus of EHEC O157:H7 with a potential role in host epithelial cell colonization. However, EPEC-ECP plays a secondary role in adherence.Since 2007 the CDC recommends only third generation cephalosporins as the elected treatment for Neisseria gonorrhoeae infections. There is an urgent need to search for new drug targets and to development new drugs. Regions rich in guanine in the DNA are able to form secondary structures known as G-quadruplexes. It has been shown that G-quadruplexes are involved in control of transcription, translation and telomere elongation in mammalian cells. G-quadruplex interactive compounds are being developed for cancer therapy. G-quadruplex motifs are also present in bacteria. The fact that G-quadruplex interactive compounds can impair cancer development leads us to hypothesize that these drugs can be used as antimicrobials. This work presents evidence for the potential of G-quadruplex interactive compounds as broad-spectrum antimicrobials.
17

Generating bio-organic metal surfaces with modified surface properties using the type IV pilus of Pseudomonas aeruginosa

Davis, Elisabeth M Unknown Date
No description available.
18

Synthesis, conformational analysis, and biological evaluation of peptides from E. coli P pilus proteins

Karlsson, Katarina Flemmer. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997.
19

Synthesis, conformational analysis, and biological evaluation of peptides from E. coli P pilus proteins

Karlsson, Katarina Flemmer. January 1997 (has links)
Thesis (doctoral)--Lund University, 1997.
20

Dam methylation and putative fimbriae in Klebsiella pneumoniae

Kuehn, Joanna Sue. Clegg, Steven. January 2009 (has links)
Thesis supervisor: Steven Clegg. Includes bibliographic references (p. 123-131).

Page generated in 0.0367 seconds