• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 16
  • 3
  • 1
  • Tagged with
  • 42
  • 42
  • 10
  • 8
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Opportunities and uncertainties in the early stages of development of CO2 capture and storage

Lind, Mårten January 2009 (has links)
The topic of this thesis is carbon dioxide (CO2) capture and storage (CCS), which is a technology that is currently being promoted by industries, scientists and governments, among others, in order to mitigate climate change despite a continued use of fossil fuels. Because of the complex nature of CCS and the risks it entails, it is controversial. The aim of this thesis is to analyse how the technology may be further developed in a responsible manner. In the first part of the thesis different methods for capturing CO2 from industrial processes as well as power plants are analysed. The aim is to identify early opportunities for CO2 capture, which is considered important because of the urgency of the climate change problem. Three potential early opportunities are studied: i) capturing CO2 from calcining processes such as cement industries by using the oxyfuel process, ii) capturing CO2 from pressurised flue gas, and iii) capturing CO2 from hybrid combined cycles. Each opportunity has properties that may make them competitive in comparison to the more common alternatives if CCS is realised. However, there are also drawbacks. For example, while capturing CO2 from pressurised flue gas enables the use of more compact capture plant designs as well as less expensive and less toxic absorbents, the concept is neither suitable for retrofitting nor has it been promoted by the large and influential corporations. The second part of the thesis has a broader scope than the first and is multidisciplinary in its nature with inspiration from the research field of Science and Technology Studies (STS). The approach is to critically analyse stakeholder percep-tions regarding CCS, with a specific focus on the CCS experts. The thesis sheds new light on the complexity and scientific uncertainty of CCS as well as on the optimism among many of its proponents. Because of the uncertain development when it comes to climate change, fossil fuel use and greenhouse gas emissions, the conclusion is that CCS has to be further developed and demonstrated. A responsible strategy for a future development of CCS would benefit from: i) a search for win-win strategies, ii) increasing use of appropriate analytical tools such as life-cycle analysis, iii) a consideration of fossil fuel scarcity and increasing price volatility, iv) funding of unbiased research and v) increasing simultaneous investments in long-term solutions such as renewable energy alternatives and efficiency improvements. / QC 20100727
42

Anaerobní membránový bioreaktor (AnMBR) pro čištění odpadních vod potravinářského průmyslu / Anaerobic membrane bioreactor (AnMBR) for food industry wastewater treatment.

Polášek, Daniel Unknown Date (has links)
The most significant environmental problems related to the food industry is water consumption and pollution, energy consumption and waste production. Most of the water that does not become a part of the products ultimately leaves plants in the form of wastewater, which is often very specific and requires adequate handling / treatment / disposal. For the purpose of this thesis, brewery industry was chosen, because of its very long tradition in the Czech history and culture. Anaerobic technologies are applied for still wider range of industrial wastewater treating. In general anaerobic membrane bioreactors (AnMBRs) can very effectively treat wastewater of different concentration and composition and produce treated water (outlet, permeate) of excellent quality, that can be further utilised. At the same time, it can promote energy self-sufficiency through biogas production usable in WWTPs / plants. Main disadvantages include unavoidable membrane fouling and generally higher CAPEX / OPEX. Within the framework of Ph.D. studies and related research activities, immersed membrane modules for anaerobic applications were selected and lab-scale tested (designed and assembled laboratory unit), an AnMBR pilot plant was designed, built and subsequently tested under real conditions - at Černá Hora Brewery WWTP (waste waters from the brewery and associated facilities). The pilot AnMBR and the technology itself has been verified over more than a year (5/2015 – 11/2016) of trial operation - the initial and recommended operational parameters have been set up, minor construction adjustments / modifications and measurement & regulation optimizations have been made, the recommended membrane cleaning and regeneration procedure has been verified. Last, but not least, conclusions and recommendations of the trial operation were summarised - some key findings and recommendations for further operation, use and modifications of the existing AnMBR pilot plant are presented.

Page generated in 0.0615 seconds