Spelling suggestions: "subject:"lima county arizona"" "subject:"lima county orizona""
21 |
Geologic Interpretations of a Siliceous Breccia in the Colossal Cave Area, Pima County, ArizonaAcker, Clement John January 1958 (has links)
In the Colossal Cave area, Pima County, Arizona, massive blocks of Paleozoic sedimentary rocks have been thrust from a southerly direction over an irregular surface of Rincon Valley granite of Laramide age. The Paleozoic rocks involved in the thrusting are the Bolsa quartzite, Abrigo formation, Martin limestone, Escabrosa limestone, Horquilla limestone, and Andrada formation. The Pantano formation (Miocene ?) is also present under the thrust sheet. The thrusting is of an imbricate nature with slip-page mainly teaking place along incompetent rock units. Large folds occur in the Escabrosa limestone and Horquilla lime-stone. A siliceous breccia is associated with thrust planes in the area. The competent units of the Paleozoic sediments were fractured and brecciated along the thrust planes. Solutions dissolved part of the silica and hematite from the Bolsa quartzite and deposited it in the fractured and brecciated zones.
|
22 |
Supergene Mineralogy and Processes in the San Xavier Mine Area-Pima County, ArizonaArnold, L. Clark January 1964 (has links)
This is a study of the supergene mineralogy of the San Xavier West mine located in the Pima mining district, Pima County, Arizona. The number and composition of secondary species collected are found to be closely related to the relative amounts of the various primary minerals and to the manner in which they were emplaced in the host rock. Supergene mineral species were selected that appeared to be in equilibrium with their environment, and certain assumptions are made concerning the stability fields of these minerals. The equilibrium conditions in most cases can be narrowed and often closely defined by combining the stability fields of several secondary minerals. On this basis, two acid environments and one alkaline environment are found to exist and are separable on the basis of mineralogy. The fields of chalcanthite and melanterite define a highly acid environment while those of goslarite and malachite define an environment of lower acidity. The association of calcite, rosasite, hemimorphite, and malachite indicate an alkaline environment. The acidity of the environments is principally determined by the amount of pyrite present, and pH may be lower than 3 if pyrite is abundant and reactive carbonate material lacking. Also, knowledge of stability relations allowed the history of enrichment and subsequent oxidation to be followed in a case where a transitional species had been removed from reaction by inclusion with gypsum.
|
23 |
The Geology and Mineralization of the Sedimentary Hills Area, Pima County, ArizonaBennett, Paul J. January 1957 (has links)
Mildly metamorphosed Cretaceous siltstones, arkoses and limey shales and a small composite stock of granitic composition are the principal rocks exposed in the Sedimentary Hills area, which lies six miles west of Tucson, Arizona. About 2400 feet of sediments were measured and assigned to the Amole Arkose Formation. The beds dip to the south and strike northwesterly. The stock is composed of two granitic facies. The northern and earlier part of the stock is a quartz monzonite which is mildly altered. The southern part of the intrusive is a granite porphyry which is altered to a greater degree and exhibits significant disseminations of chalcopyrite and pyrite. A quartz-pegmatite plug, probably a late phase of the intrusions, intrudes the quartz monzonite. Structure in the area is dominated by a large thrust zone which strikes generally parallel to the bedding. Within the Sedimentary Hills area, normal faulting and drag folding are tributary to the thrusting. Minor copper oxide minerals are frequent along large and small faults, and in the granite porphyry stock. Wide brick-red and brown gossans occur along the major thrust plane.
|
24 |
Stratigraphy and Depositional History of the Pantano Formation (Oligocene-Early Miocene), Pima County, ArizonaBalcer, Richard Allen January 1984 (has links)
The Pantano Formation comprises 1,250 m of alluvial, fluvial, lacustrine, and volcanic rocks deposited in a basin formed in response to regional extension during mid- Tertiary time in southeastern Arizona. During deposition, the locations and composition of sediment source areas varied as contemporaneous uplift occurred adjacent to the basin. The lower half of the formation was deposited as alluvial fans that prograded northward, westward, and southward; the upper half was deposited during southwestward retreat of alluvial fan deposition and the onset of lacustrine deposition. An andesite flow separates the two depositional regimes. Radiometric dates of 24.4 ± 2.6 m.y. B.P. for the andesite and 36.7 ± 1.1 m.y. B.P. for a rhyolitic tuff disconformably underlying the formation indicate that deposition occurred during Oligocene to early Miocene time. Proper stratigraphic sequencing and description, paleocurrent analysis, and gravel provenance study aided in understanding the depositional history of the formation.
|
25 |
A Paleocene Paleomagnetic Pole from the Gringo Gulch Volcanics, Santa Cruz County, ArizonaBarnes, Arthur E. January 1980 (has links)
Paleomagnetic data from 25 sites (5 samples per site) in andesite flows of the Gringo Gulch Volcanics in Santa Cruz County, Arizona, were analyzed to determine a lower Paleocene paleomagnetic pole. Alternating-field demagnetization to 500 oe peak field was sufficient to erase secondary viscous components. The mean direction of magnetization (inclination = -58.8°, declination = 167.5 °) was obtained by averaging the site mean directions of the 25 sites, which are all reversed. The resultant lower Paleocene pole position is at lat. 77.0 °N, 1on. 201.0 °E (dp = 1.2 °, dm = 1.7 °).
|
26 |
Structural Investigations of the Italian Trap Allochthon, Redington Pass, Pima County, ArizonaBenson, Gregory Scott January 1981 (has links)
Italian Trap Allochthon is a rare upper-plate exposure of Paleozoic metasedimentary and Precambrian to Tertiary crystalline tectonites in the Santa Catalina-Rincon metamorphic core complex. Elsewhere in the complex, metasedimentary tectonite is usually restricted to an autochthononous position. The internal structures of the allochthon consist of numerous low-angle faults, tear faults, and overturned asymmetric and upright folds. Close association of the low-angle faults and asymmetric folds, and vergence of the folds, indicates that these folds were formed during westward transport along the low-angle faults. The structures of the allochthon are truncated and rotated to the northeast by a listric (?) normal fault. The probable shape of the fault surface, together with the northeastward rotation of the internal structures, suggests translation of the allochthon from the northeast to the southwest. The fact that metasedimentary tectonites are found in upper- plate position indicates that the listric (?) normal faulting post-dates the metamorphism of the Paleozoic and Mesozoic strata. Metamorphism in turn was part of the development of the Santa Catalina-Rincon metamorphic core complex. It is inferred that the Italian Trap Allochthon was emplaced in the final stages of profound regional extension which prevailed during the mid-Tertiary in southern Arizona.
|
27 |
Migration of Recharge Water Downgradient from the Santa Catalina Mountains into the Tucson Basin AquiferBarger, Erin E. January 1996 (has links)
Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams within the basins and by water entering along the margins of the basins from surrounding mountains (mountain -front recharge). The Tucson Basin of Southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (about 70 cm/yr) as the basin does (about 30 cm/yr). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through joints and fractures. Water samples were obtained from springs in the Santa Catalina Mountains. Stable isotopes and thermonuclear bomb-produced tritium enabled qualitative characterizations of flow paths and flow velocities. Stable isotopic measurements fail to display a direct altitude effect. Tritium values indicate that although a few springs discharge pre-bomb water, most springs discharge waters from the 1960's or later.
|
28 |
Stratigraphy and Sedimentology of the Bisbee Group in the Whetstone Mountains, Pima and Cochise Counties, Southeastern ArizonaArchibald, Lawrence Eben January 1982 (has links)
The Aptian-Santonian(?) Bisbee Group in the Whetstone Mountains comprises 2375 m of clastic sedimentary rocks and limestones. The basal Glance Conglomerate unconformably overlies the Pennsylvanian-Permian Naco Group. It consists of limestone conglomerates which were deposited in proximal alluvial fan environments. The superadjacent Willow Canyon Formation contains finer grained rocks which were deposited in the distal portions of alluvial fans. The lacustrine limestones in the Apache Canyon Formation interfinger with and overlie these alluvial fan facies. The overlying Shellenberger Canyon Formation is composed mostly of terrigenous rocks derived from westerly terranes. This formation contains thick sequences of fluvio-deltaic facies as well as a thin interval of estuarine deposits which mark a northwestern extension of the marine transgression in the Bisbee -Chihuahua Embayment. The youngest formation (Upper Cretaceous?) in the Bisbee Group, the Turney Ranch Formation, consists of interbedded sandstones and marls which were deposited by fluvial and marine(?) processes.
|
Page generated in 0.0651 seconds