• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation into the anxiolytic properties of melatonin in humans

McCallaghan, Johannes Jacobus January 1999 (has links)
The purpose of this project was to investigate the role of melatonin in the pathophysiology of anxiety in humans. The literature study confirmed the intimate relationship between serotonin and melatonin. Melatonin is not only able to act as an agonist (in physiological concentrations) and an antagonist (at higher concentrations) on serotonin receptors but via control of brain pyridoxal kinase activity might have an effect on GABA, serotonin, dopamine and norepinephrine synthesis. A clinical trial to investigate melatonin's effect on anxiety in humans was conducted as a pilot study. Thirty patients complaining of anxiety participated in a liN of 1" double blind placebo controlled trial. During the experiment each subject was thus exposed to melatonin and a placebo for a week at a time on two occasions. During the first phase of the experiment, (Pair '1) patients showed a statistically significant reduction in their anxiety levels during the first period (P1P1), which was not the case during the second period (P1P2). The improvement however continued during the second phase of the experiment (Pair 2) so that there was also a statistically significant improvement during P 2 P 2 (Period 2 / Pair 2) when placebo was administered. It could not conclusively be shown that melatonin was responsible for the improvement in the patients' anxiety. The explanation for these results suggests thelt the improvement was due to a: 1) placebo effect throughout, 2) psychotherapeutic effect due to contact with a clinician, 3) melatonin induced phase shift in the patient's endogenous melatonin response curve, 4) combination of all 3 options. This pilot study lays the groundwork for a much more exhaustive study in which the melatonin of the patients is determined before melatonin is administered, the role of the clinician is clarified and the most appropriate time for melatonin administration is sought .
2

The role of the pineal gland, and its hormone melatonin, in the control of the melanocytes of Xenopus laevis Daudin

Charlton, H. M. January 1965 (has links)
No description available.
3

Indole rhythms, locomotor activity and the environment

Allen, Andrée Elizabeth. January 1988 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
4

Pineal-adrenal gland interactions in search of an anti-stressogenic role for melatonin

Van Wyk, Elizabeth Joy January 1993 (has links)
The multiple functions of the pineal gland have been collectively interpreted as constituting a general anti-stressogenic role. The adrenal glands play a central role in maintaining homeostasis. The major neuroendocrine consequence of long-term stress is elevated circulating glucocorticoid levels. In this study, the effect of chronic, oral hydrocortisone treatment on pineal biochemistry was investigated in male Wi star rats of the albino strain. The results show that seven days of oral hydrocortisone treatment endows the pineal gland with the ability to increase melatonin synthesis in organ culture. The increase is accompanied by a rise in NAT activity, cyclic AMP levels and enhanced specific binding to the pineal B-adrenergic receptors. It appears that hydrocortisone sensitizes the pineal gland to stimulation by B-adrenergic agonists. thus rendering the pineal more responsive to B-adrenergic agonists. Further studies were directed at demonstrating an anti-stressogenic function for the pineal gland by investigating whether the principal pineal indole, melatonin. could protect against the deleterious effects of elevated. circulating drocortisone levels. The results show that chronic, oral hydrocortisone treatment significantly increases liver tryptophan pyrrolase activity. The catabolism of tryptophan by tryptophan pyrrolase is an important determinant of tryptophan availability to the brain, and therefore, brain serotonin levels. The findings show that melatonin inhibits basal and hydrocortisone-stimulated liver tryptophan pyrrolase apoenzyme activity in a dose-dependent manner. This inhibition suggests that melatonin may protect against excessive loss of tryptophan from circulation and against deficiencies in the cerebral serotinergic system which are associated with mood and behavioural disorders. It was shown that another deleterious effect of chronic hydrocortisone treatment is a significant increase in the number of glutamate receptors in the forebrain of male Wistar rats. The increase in receptor number observed in this study is probably due to an increase in the synthesis of glutamate receptors and is associated with a marked reduction in the affinity of the glutamate receptors for glutamate. possible to demonstrate an receptor number or the For practical reasons, it was not effect of melatonin on either glutamate affinity of glutamate receptors for glutamate in rat forebrain membranes. In view of the neurotoxic effect of glutamate in the eNS, the functional significance of recently described glutamate receptors in the pineal gland was investigated. The results show that 10-4 M glutamate significantly inhibits the isoprenaline-stimulated synthesis of N-acetylserotonin and melatonin in organ culture when the pineal glands were pre-incubated with glutamate for 4 hours prior to stimulation with isoprenalin and when glutamate and isoprenaline were administered together in vitro. GABA, a glutamate metabolite could not mimic the decrease in isoprenalinestimulated melatonin, and it is likely that the observed effects were directly attributed to glutamate. Incubation of the pineal gland with 10-4 M glutamate in organ culture did not affect HIOMT activity in pineal homogenates, but significantly elevated both basal and isoprenaline-stimulated NAT activity. It was concluded that glutamate only inhibits melatonin synthesis in intact pineal glands and not in pineal homogenates. The present study has provided further support for an interaction between the pineal and the adrenal glands. There is an ever increasing likelihood that melatonin is an anti-stressogenic hormone and that the pineal gland may have a protective role to play in the pathology of stress-related diseases.
5

The effect of appetite suppressants on pineal function

Mchunu, Bongani Isaac January 1994 (has links)
The pineal gland has become the subject of considerable investigation as it provides a productive experimental model for studying circadian rhythms and regulation of end organs. In the rat, the pineal gland provides a convenient model for investigating the noradrenergic receptor system and the effects of various drugs on this system. The effect of appetite suppressants on the rat pineal gland function is described. Appetite suppressants increase melatonin synthesis in organ cultures of rat pineal glands. This effect appears to be mediated by noradrenaline acting on β-adrenoceptors on the pinealocyte membrane. When β-adrenoceptors are blocked, the appetite suppressant-induced rise in melatonin synthesis is prevented. Depletion of noradrenaline in sympathetic nerve terminals also prevented the appetite suppressant-induced rise in melatonin synthesis. Activation of β-adrenoceptors is followed by a rise in N-acetyltransferase activity via a cyclic adenosine monophosphate second messenger system. The effect of appetite suppressants on the activity of liver tryptophan pyrrolase was also investigated. The activity of this enzyme is an important determinant of tryptophan availability to the brain and consequently of brain serotonin levels. The results show that appetite suppressants inhibit both holoenzyme and total enzyme activities of tryptophan pyrrolase. This finding suggests that appetite suppressants may act by inhibiting tryptophan pyrrolase activity thereby increasing brain serotonin, a phenomenon known to be associated with anorexia. There are two possible mechanisms by which appetite suppressants inhibit tryptophan pyrrolase activity. Firstly, these agents, being drugs of dependence, may increase liver NADPH concentrations which inhibit pyrrolase activity. Secondly, appetite suppressants may act on the pineal gland to stimulate melatonin synthesis. Melatonin inhibits pyrrolase activity in a dose-dependent manner. This inhibition will elevate plasma tryptophan levels which result in a rise in brain serotonin synthesis. The present study suggests a possible relationship between the pineal gland and appetite centres in the hypothalamus. Melatonin may have a direct effect on appetite centres since food restriction is associated with an increased melatonin binding in the hypothalamus. If this possible relationship can be extended, melatonin can open new possibilities for the control of food intake and consequently, of pathological obesity.
6

A study of the effects of the pineal hormone, melatonin, on dopaminergic transmission in the central nervous system of rats

Burton, Susan Frances January 1990 (has links)
Dopamine mechanisms in the central nervous system are important in the control of both normal and abnormal motor function. The recent observations in both animal and human studies, that melatonin, the principal hormone of the pineal gland, may have a role in the control of movement and the pathophysiology of movement disorders, have given rise to the concept that melatonin may have a modulatory influence on central dopaminergic neurotransmission. This study makes use of three animal behavioural models as well as a biochemical model of central dopaminergic function to further investigate the concept. Results from studies using the biochemical model, which investigated the effect of melatonin on dopamine and apomorphine stimulation of dopamine-sensitive adenylate cylase, suggest that melatonin is neither a competitive antagonist nor agonist at the D₁ receptor level, although the possibility of physiological stimulation or antagonism is not excluded. In behavioural studies, prior melatonin mg/kg administration (1 and 10 (8M) ip) inhibited apomorphine induced stereotypy and locomotor activity in normal rats, and apomorphine-induced rotational behaviour in 6-hydroxydopamine and quinolinic acid lesioned rats. The possibility that these results may have physiological significance is borne out by the observation that, under enviromental lighting conditions that are associated with raised endogeous melatonin levels, apomorphine- induced stereotypy and locomotor activity is attenuated. The general conclusion is that melatonin has an inhibitory influence on central nervous system dopaminergic function, suggesting therefore, that the pineal gland and melatonin may have a role in the pathophysiology and treatment of movement and behavioural disorders associated with dopaminergic dysfunction

Page generated in 0.0889 seconds