• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Pitch Distance and Tilt Angleof PV Power Plant for Different Climate

Alsulaiman, Mohamad, Mohammadi, Najmeh January 2020 (has links)
Finding the optimum inter-row spacing and installation tilt for tilted or ground mounted PV systems is a big issue in designing the large-scale PV systems. Increasing the array spacing leads to higher annual generated energy because of the reduced impact of row-shading, but on the other hand, it increases costs of land purchase/lease and wiring costs. Many compromises between performance and cost should be done to design an optimum large-scaled solar plant. One of the criteria in designing of solar power plants is reducing of LCOE, which reflects the cost of every unit of generated energy. Site locations have large impacts on the optimal design of pitch distance and title angles, but such impacts have not been studied extensively in the existing studies, so it is going to bridge this research gap in this thesis.   The main purpose of this research is to investigate the impact of climate conditions on the pitch distance and tilt angle for large-scale PV plant and finding the optimal pitch distance and tilt according to the least cost of production. The impact of climate and meteorological data on the self-shading loss and yield of energy are investigated through a simulation tool, which is PVsyst software here, in different tilt angles and distances between rows. The different climates can be considered by choosing site locations in different latitudes to cover all climate zones. Six cities in temperate climate, three cities in tropic climate and one city in polar climate have been selected. LCOE minimizing is a measure in finding the optimum tilt and pitch distance for a 1 MW solar system installed in different latitudes. In this study the type, size and cost of components have been assumed constant in different climate conditions. There is a wide range of variability in some economic indicators like interest rate and discount rate as well as the cost of land in different climates or even countries in the same climate; then to highlight the impacts of climate conditions on the optimal tilt and pitch distance, these parameters were assumed to be constant in this study.   The results show the optimal tilt of angles increases with getting far of equator in a range between 0° and 40° to capture more direct sunlight, and the optimal raw spacing grows in further locations to equator in a range between 4 m to 11 m to reduce self- shading loss. Moreover, the best module configuration for PV arrays (portrait or landscape) can be different in different climates.

Page generated in 0.0463 seconds