• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Feature Extraction for Shape Analysis, Object Detection and Tracking

Solis Montero, Andres January 2016 (has links)
During the course of this thesis, two scenarios are considered. In the first one, we contribute to feature extraction algorithms. In the second one, we use features to improve object detection solutions and localization. The two scenarios give rise to into four thesis sub-goals. First, we present a new shape skeleton pruning algorithm based on contour approximation and the integer medial axis. The algorithm effectively removes unwanted branches, conserves the connectivity of the skeleton and respects the topological properties of the shape. The algorithm is robust to significant boundary noise and to rigid shape transformations. It is fast and easy to implement. While shape-based solutions via boundary and skeleton analysis are viable solutions to object detection, keypoint features are important for textured object detection. Therefore, we present a keypoint featurebased planar object detection framework for vision-based localization. We demonstrate that our framework is robust against illumination changes, perspective distortion, motion blur, and occlusions. We increase robustness of the localization scheme in cluttered environments and decrease false detection of targets. We present an off-line target evaluation strategy and a scheme to improve pose. Third, we extend planar object detection to a real-time approach for 3D object detection using a mobile and uncalibrated camera. We develop our algorithm based on two novel naive Bayes classifiers for viewpoint and feature matching that improve performance and decrease memory usage. Our algorithm exploits the specific structure of various binary descriptors in order to boost feature matching by conserving descriptor properties. Our novel naive classifiers require a database with a small memory footprint because we only store efficiently encoded features. We improve the feature-indexing scheme to speed up the matching process creating a highly efficient database for objects. Finally, we present a model-free long-term tracking algorithm based on the Kernelized Correlation Filter. The proposed solution improves the correlation tracker based on precision, success, accuracy and robustness while increasing frame rates. We integrate adjustable Gaussian window and sparse features for robust scale estimation creating a better separation of the target and the background. Furthermore, we include fast descriptors and Fourier spectrum packed format to boost performance while decreasing the memory footprint. We compare our algorithm with state-of-the-art techniques to validate the results.

Page generated in 0.0901 seconds