Spelling suggestions: "subject:"plane wave decomposition"" "subject:"alane wave decomposition""
1 |
Time reversal and plane-wave decomposition in seismic interferometry, inversion and imagingTao, Yi, active 2012 09 July 2013 (has links)
This thesis concerns the study of time reversal and plane-wave decomposition
in various geophysical applications. Time reversal is a key step in seismic
interferometry, reverse time migration and full waveform inversion. The plane-wave
transform, also known as the tau-p transform or slant-stack, can separate waves based
on their ray parameters or their emergence angles at the surface.
I propose a new approach to retrieve virtual full-wave seismic responses from
crosscorrelating recorded seismic data in the plane-wave domain. Unlike a traditional
approach where the correlogram is obtained from crosscorrelating recorded data,
which contains the full range of ray parameters, this method directly chooses
common ray parameters to cancel overlapping ray paths. Thus, it can sometime avoid
spurious arrivals when the acquisition requirement of seismic interferometry is not
strictly met. I demonstrate the method with synthetic examples and an ocean bottom
seismometer data example. I show a multi-scale application of plane-wave based full
waveform inversion (FWI) with the aid of frequency domain forward modeling.
FWI uses the two-way wave-equation to produce high-resolution velocity models for
seismic imaging. This technique is implemented by an adjoint-state approach, which
viii
involves a time-reversal propagation of the residual wavefield at receivers, similar to
seismic interferometry. With a plane-wave transformed gather, we can decompose the
data by ray parameters and iteratively update the velocity model with selected ray
parameters. This encoding approach can significantly reduce the number of shots and
receivers required in gradient and Hessian calculations. Borrowing the idea of
minimizing different data residual norms in FWI, I study the effect of different
scaling methods to the receiver wavefield in the reverse time migration. I show that
this type of scaling is able to significantly suppress outliers compared to conventional
algorithms. I also show that scaling by its absolute norm generally produces better
results than other approaches. I propose a robust stochastic time-lapse seismic
inversion strategy with an application of monitoring Cranfield CO2 injection site. This
workflow involves two steps. The first step is the baseline inversion using a hybrid
starting model that combines a fractal prior and the low-frequency prior from well log
data. The second step is to use a double-difference inversion scheme to focus on the
local areas where time-lapse changes have occurred. Synthetic data and field data
show the effectiveness of this method. / text
|
2 |
Back-propagation beamformer design with transverse oscillations for motion estimation in echocardiography / Formation de voie par rétro-propagation pour l'estimation du mouvement en échocardiographieGuo, Xinxin 12 September 2014 (has links)
L'échographie est aujourd'hui l'une des modalités les plus populaires de diagnostic médical. Il permet d'observer, en temps réel, le mouvement des organes qui facilite le diagnostic des pathologies pour des médecins. L'échocardiographie [1, 2], l'imagerie du flux sanguin [3, 4] et l’élastographie [5-7] sont les domaines préférés de l'estimation de mouvement en utilisant l'échographie (en raison de son haut frame-rate).En conséquence, les images avec meilleurs qualités sont nécessaires. . En imagerie cardiaque, le système classique d'imagerie est limité dans la direction transversale (la direction perpendiculaire à celle de propagation). Travaillant sur la formation des images, ce problème peut être résolu en modifiant la façon de formateur de voie afin d'introduire des oscillations transversales (OTs) dans la fonction d’étalement du point (PSF). La technique d’oscillation transversale a montré son potentiel d'améliorer la précision de l'estimation de mouvement local dans la direction transversale (la direction perpendiculaire à celle de propagation). La classique OT en géométrie linéaire, basée sur l'approximation de Fraunhofer, relie la PSF et la fonction de pondération par la transformée de Fourier. Motivé par l'adaptation des OTs en échocardiographie, nous proposons une technique spécifique basée sur la rétro-propagation afin de construire des OTs en géométrie sectorielle. La performance de la méthode de rétro-propagation proposée a été étudiée progressivement, comparée avec la méthode de la transformée de Fourier, par exemple, l'évaluation de la qualité de la PSF quantifié, dans l'estimation de mouvement cardiaque en simulation, et en étude la qualité des PSF visuellement expérimentale. Les résultats quantifiés montrent les OT-images sont mieux contrôlés par la méthode proposée que par le formateur de voie conventionnelle. Une autre méthode, basée sur la décomposition d'onde plane et un principe différent de rétro-propagation, a été présentée. Cette méthode mieux prend en compte la propriété 2D de PSF, en décomposant la PSF dans un ensemble d'ondes planes directionnelle, les rétro-propage à la sonde, en utilisant les résultats de superposition comme excitations, un PSF simulée et conforme fortement au PSF théorique est acquis. En adaptant cette méthode à la géométrie sectorielle, la qualité de la PSF obtenue en face et sur la côté de la sonde est meilleure en utilisant la décomposition en ondes planes à celle de la transformée de Fourier, le travail supplémentaire sera adressé à adapter la décomposition en ondes planes à imagerie sectorielle et l’estimation du mouvement. / Echography is nowadays one of the most popular medical diagnosis modalities. It enables real-time observation the motion of moving organs which facilitates the diagnosis of pathologies for physician. Echocardiography [1, 2], blood flow imaging [3, 4] and elastography [5-7] are the favorite domains of motion estimation in using of echography (e.g., due to its high frame-rate capacity). Thus the requirements for imaging with high quality are on the primary place. In cardiac imaging, the conventional imaging system is somehow limited in the transverse direction (the direction perpendicular to the beam axis). Working on the image formation, this problem can be addressed by modifying the beamforming scheme in order to introduce transverse oscillations (TOs) in the system point spread function (PSF). Transverse oscillation techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates PSF and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation in order to build TOs in sectorial geometry. The performance of the proposed back-propagation method has been studied gradually, in comparison with the Fourier transform, such as in evaluation of the quality of PSF, in estimation of simulated cardiac motion and in experiments study, etc. The quantified results demonstrate the proposed method leads to better controlled TOs images than the conventional beamforming. Another method based on plane wave decomposition and a different back-propagation principle has been presented. This method is better taking into account the 2D property of PSF, by decomposing the PSF into a set of plane waves directionally, back-propagating them to the probe, by using the superposition results as excitations, a simulated PSF with high accordance to the theoretical one is acquired. By adapting this method to sectorial geometry, the quality of PSF obtained in front of probe is better using the plane wave decomposition method than that of Fourier relation, but it is limited for the scanning on the side of probe, so the further work will be addressed to adapting the plane wave decomposition method to the complete sectorial imaging.
|
Page generated in 0.1341 seconds