Spelling suggestions: "subject:"plano bidimensional"" "subject:"plano idimensional""
1 |
Geometria Projetiva: Matemática e ArteMaltez, Luiz Sergio Cunha 26 March 2015 (has links)
Submitted by Marcos Samuel (msamjunior@gmail.com) on 2017-06-07T14:59:26Z
No. of bitstreams: 1
Dissertacao-Maltez-16-04-15 (1).pdf: 13705127 bytes, checksum: 7519a8a90337dcde6a9d8af71e8814d5 (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-12T15:00:45Z (GMT) No. of bitstreams: 1
Dissertacao-Maltez-16-04-15 (1).pdf: 13705127 bytes, checksum: 7519a8a90337dcde6a9d8af71e8814d5 (MD5) / Made available in DSpace on 2017-06-12T15:00:45Z (GMT). No. of bitstreams: 1
Dissertacao-Maltez-16-04-15 (1).pdf: 13705127 bytes, checksum: 7519a8a90337dcde6a9d8af71e8814d5 (MD5) / O objetivo deste trabalho é contribuir para uma melhor introdução ao estudo de Geometria Espacial no que tange a visão da figura tridimensional vista no plano bidimensional por intermédio da sua construção. O meio para atingir esse objetivo é o estudo da Geometria Projetiva, que tem como principal instrumento a Perspectiva. O trabalho foi dividido cinco capítulos, enfatizado no primeiro os conceitos gerais de Álgebra Linear, pois a linguagem escolhida foi a vetorial. Os três subsequentes referem-se as teorias das Geometrias Euclidiana, Elíptica e Projetiva com seus axiomas e modelos matemáticos tendo como prioridade apresentar as diferenças entre elas, notadamente o Axioma das Paralelas. Finalmente, no último capítulo, é lançado uma proposta de noções de Geometria Projetiva como introdução ao estudo de Geometria Espacial, que consiste em apresentar as técnicas de Perspectiva, usando como fator motivacional as obras de arte da Renascença que originaram o tratamento matemático da Geometria Projetiva e, também, propostas de atividades em sala de aula, principalmente construções de figuras utilizando o programa Geogebra.
|
Page generated in 0.09 seconds