• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of a Human Lipodystrophy Gene Homologue on Neutral Lipid Accumulation in Arabidopsis Leaves

James, Christopher Neal 08 1900 (has links)
CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in beta-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of corp plants.
2

Manipulation of Lipid Droplet Biogenesis for Enhanced Lipid Storage in Arabidopsis thaliana and Nicotiana benthamiana

Price, Ann Marie 12 1900 (has links)
In this study, I examined the use of mouse (Mus musculus) Fat Specific Protein 27 (FSP27) ectopically expressed in Arabidopsis thaliana and Nicotiana benthamiana as a means to increase lipid droplet (LD) presence in plant tissues. In mammalian cells, this protein induces cytoplasmic LD clustering and fusion and helps prevent breakdown of LDs contributing to the large, single LD that dominates adipocytes. When expressed in Arabidopsis thaliana and Nicotiana benthamiana, FSP27 retained its functionality and supported the accumulation of numerous and large cytoplasmic LDs, although it failed to produce the large, single LD that typifies adipose cells. FSP27 has no obvious homologs in plants, but a search for possible distant homologs in Arabidopsis returned a Tudor/PWWP/MBT protein coded for by the gene AT1G80810 which for the purposes of this study, we have called LIPID REGULATORY TUDOR DOMAIN CONTAINING GENE 1 (LRT1). As a possible homolog of FSP27, LRT1 was expected to have a positive regulatory effect on LDs in cells. Instead, a negative regulatory effect was observed in which disruption of the gene induced an accumulation of cytoplasmic LDs in non-seed tissue. A study of lrt1 mutants demonstrated that disruption this gene is the causal factor of the cytoplasmic LD accumulation observed in the mutants, that this phenotype occurs in above ground tissues and is present throughout the early growth stages of the plant. Further examination of lrt1 mutant plants has allowed a preliminary understanding of the role LRT1 may play in LD regulation. Taken together, the results of this study point towards some promising strategies to increase LD content in plant tissues.

Page generated in 0.0651 seconds