Spelling suggestions: "subject:"plant buildingsresearch."" "subject:"plant findings:research.""
1 |
Genetic studies of grain and morphological traits in early generation crosses of Malawi rice (Oryza sativa L.) Landraces and NERICA varieties.Mzengeza, Tenyson. January 2010 (has links)
Rice (Oryza sativa L.) is the second most important cereal crop in Malawi. Rice productivity in the dominant (85%) rainfed ecosystem is very low, with mean yield of only 1.4 t ha-1. Farmers plant traditional landraces that have low yield potential and are susceptible to various stresses such as drought and diseases. Development and introduction of improved rice varieties, with stress tolerance traits from introduced varieties, such as the New Rice for Africa (NERICAs), could significantly increase productivity. Previous attempts to introduce high yielding irrigated varieties into the dominant rainfed ecosystem in Malawi have not been successful because farmers basically did not adopt the varieties, claiming that the varieties were lacking in grain traits that they preferred but that the traits were present in their landraces. The notable traits mentioned, through previous informal surveys, were long grains, medium to slender shape and aromatic grain with intermediate gelatinization temperature. No formal study has been conducted to ascertain the preferences, and the genetic control of the traits, including yield and yield related traits, have not been studied. The objectives of this study were to: 1) confirm farmers’ preferences for grain traits using participatory rural appraisal; 2) determine amount of genetic variability for yield and yield related traits in Malawi rice landraces, 3) determine the genetic control and correlations of grain length, grain shape and 1000-grain weight, 4) determine the inheritance of aroma and gelatinization temperature and, 5) determine the genetic control, correlations and path coefficients of yield and yield related traits, in F2 generations of Malawi rice landraces and NERICA varieties crosses. To confirm the farmers’ preferences for grain traits, a participatory rural appraisal was conducted in 2006 in two villages that were representative of rainfed rice growing areas in Malawi. The villages were Liundi and Nawanga in Machinga and Salima Districts, respectively. Qualitative and quantitative data were collected through questionnaires and discussions with 190 respondents, as well as through observations. To determine variability among Malawi rice landraces, 19 landraces were planted at Lifuwu in a Randomized Complete Block Design with three replicates in 2006. Data on plant height, days to 50% flowering, number of panicles per hill, panicle length, number of filled grains per panicle, 1000-grain weight, panicle weight, grain length and grain yield were collected and analyzed. Four Malawi rice landraces were crossed to four NERICA varieties in 2006 in a North Carolina Design II mating scheme to determine the genetic control of grain size. F1 plants were raised in 2007 and in 2008, 16 F2 populations together with their parents were planted in a Randomized Complete Block Design with three replicates at Lifuwu. Data on grain length, grain shape and 1000-grain weight were collected and analyzed. To determine the inheritance of aroma and gelatinization temperature, four Malawi rice landraces were crossed to four NERICA varieties in 2006 and F1 plants were raised in 2007. In 2008, 16 F2 populations together with their parents were planted in a Randomized Complete Block Design with three replicates at Lifuwu. Aroma and gelatinization temperature were evaluated. To determine the gene action of yield and yield related traits, four Malawi rice landraces were crossed to four NERICA varieties in 2006 in a North Carolina Design II mating scheme and F1 plants were raised in 2007. In 2008, 16 F2 populations together with their parents were planted in a Randomized Complete Block Design with three replicates at Lifuwu. Data on grain yield, the number of panicles per hill, days to 50% flowering, panicle length, panicle weight and 1000-grain weight were collected and analyzed The participatory rural appraisal confirmed that that long, slender or medium shape grains, with aroma and intermediate gelatinization temperature were the key traits preferred by farmers. Therefore the farmer preferred traits of long, slender grains, with aroma and medium gelatinization temperature, must be selected for in any high yielding varieties to be developed for the rainfed rice ecosystem. Results showed that differences were significant (P=0.05) for all the traits that were studied. Heritability estimates were low to moderate: 18.3% for panicle weight, 40.0% for panicles per hill and 56.3% for days to 50% flowering date. The high genetic variability among the landraces could be used in a breeding programme to develop improved varieties for various morphological traits. The number of panicles per hill and 1000-grain weight combined moderate heritabilities with relatively high genetic advance and therefore could be reliable traits for yield improvement. Genetic analysis of grain size showed that Malawi rice landraces were variable for all three grain size characteristics, namely grain length, grain shape and 1000-grain weight. NERICA varieties were variable for 1000-grain weight. Sixteen F2 progenies were variable for all three characteristics, and the variability was significant (P=0.05). Heritability estimates were high (45.4%) for grain length and low for grain shape (12.3%) and for 1000-grain weight (14.3%) suggesting that early generation selection would be effective for grain length. Predominance of additive gene action for grain length and grain shape suggested that early generation selection would be effective for these traits. Selection for 1000-grain weight would be more effective in later generations because of preponderance of non-additive gene action in the control of this trait. The correlation between grain length and grain shape was positive (r=0.769) and highly significant (P=0.01) suggesting that breeders would choose to select for both traits simultaneously, or they would choose one of the traits to develop varieties with long grains and medium shape. Crosses between aromatic and non-aromatic varieties had non-aromatic F1. The F2 progenies segregated into 3:1 ratio for non-aromatic: aromatic suggesting that, in the Malawi rice landraces, aroma was probably simply inherited through a single recessive gene. F1 progenies, between parents with high and intermediate gelatinization temperatures had intermediate gelatinization temperature. F2 progenies segregated into 1:3 ratios for high; intermediate gelatinization temperature in three out of four crosses suggesting control by one dominant gene. The segregation pattern in one cross was not significantly different from 3:13 ratio for high: intermediate suggesting that two dominant genes, one an inhibitor, were controlling the trait. Breeding and selecting for aroma and intermediate gelatinization temperature could be accomplished relatively easily because the traits are simply inherited. The genetic variability for yield and yield related traits was wide and significant (P=0.05) in the F2 populations of Malawi rice landraces and NERICA varieties crosses indicating that the populations would be valuable sources to develop varieties with improved yield. Panicle weight and the number of panicles per hill were positively correlated with, and had high direct effects on grain yield, therefore they could be used to indirectly select for high yield. Grain yield, the number of panicles per hill and plant height were predominantly controlled by additive gene action suggesting that bulk breeding methods would be adopted for these traits. The days to 50% flowering, panicle weight and 1000-grain weight were predominantly under the control of nonadditive gene action suggesting that hybrid development would be profitable for these traits. Faya Mpata, Faya Zidyana and NERICA 3 could be the best parents for improving yield and yield related traits because they had high general combining abilities for the traits. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
|
2 |
Genetic diversity of proprietary inbred lines of sunflower, determined by mapped SSR markers and total protein analysis.Erasmus, Tertia Elizabeth. January 2008 (has links)
This study compared DNA based SSR markers with total seed protein markers, used to evaluate genetic diversity of sunflower. The multiplex-ability, cost effectiveness and applicability of microsatellites as molecular markers for a genetic diversity study were investigated and evaluated based on pedigree data of the sunflower germplasm. A solution for oil and fat interference in ultrathin iso-electric focusing gels was investigated, in order to make imaging and interpretation easier and clearer. Total protein analysis was utilized for the determination of genetic diversity on the same inbred material used for the DNA analysis. Finally a correlation is made between the data obtained on DNA vs Protein compared with phenotype and expected pedigree data. A set of 73 SSR markers with known mapped positions were utilized to determine genetic similarity in a group of sunflower inbred lines. Cluster analysis of genetic similarity revealed an excellent correlation with the breeding background and source information obtained from breeders on all inbred lines used in this study. Cluster analysis gave a clear differentiation between B and R-lines, showing clearly defined heterotic groups of the proprietary set of inbred lines. The most outstanding single-locus SSR markers in the set used for this study were identified and used as a core set. Multiplex assays were designed and optimized for the most cost and time effective method for rapid variety identification. The selected markers produced robust PCR products, amplified a single locus each, were polymorphic among the elite inbred lines and supplied a good, genome-wide framework of completely co-dominant, single-locus DNA markers for molecular breeding. The use of a fluorescent-tailed primer technique resulted in a considerable cost saving. Furthermore, the SSR markers can be multiplexed through optimization, in order to avoid undesirable primer-primer interactions and non-specific amplification. First stage iso-electric focusing of total protein extracts were used to analyze sunflower looking at genetic purity and genetic variety verification on diverse sunflower germplasm. Severe visual interference was visible on most seed storage protein extracts of sunflower. This interference was visible as a distortion in the gel matrix on the anodal end of the gel, and caused important proteins to denature in the presence of heightened field strength and the absence of a uniform matrix. Adjustment of the extraction solutions removed this interference. Total protein profiles were generated with the use ultrathin layer iso-electric focusing (UTLIEF) to assess the level of genetic diversity on the same set of sunflower lines used for the SSR analysis. Finally, the genetic diversity of the sunflower germplasm was analysed by comparing proteomic, genomic and pedigree data from the same germplasm. A total of 295 alleles were amplified with a set of 73 SSR markers with known mapped positions. These were utilized to determine the genetic relatedness of a group of B-lines and R-lines of sunflower. In parallel, a total of 68 protein bands were visualized using protein samples of two types of seed storage proteins derived from exactly the same sunflower lines. Cluster analysis clearly differentiated between the B-lines and R-lines, identifying defined heterotic groups of this proprietary set of lines. The comparison of DNA and protein data for the application of genetic diversity studies is analysed, as well as the general comparison on the use of the two different molecules as markers. / Thesis (Ph.D)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
3 |
Breeding investigations for resistance to Phaeosphaeria Leaf Spot (PLS) and other important foliar diseases and a study of yield stability in African maize germplasm.Sibiya, Julia. January 2009 (has links)
Abstract not available. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
4 |
Response to selection for downy mildew (Peronosclerospora sorghi) and maize streak virus resistance in three quality protein maize populations in Mozambique.Mariote, David. January 2007 (has links)
Quality protein maize (QPM) has high nutritional value, but production is threatened by downy mildew (DM) and maize streak virus disease (MSVD) among other constraints. There are few studies of DM and MSVD resistance in QPM cultivars. The objective of this study was to improve resistance to DM and MSVD in three QPM populations. This was realized through ascertaining farmers’ key production constraints and special preferences for cultivars; determining the utility of recurrent selection method for improvement of three QPM populations (SussumaS2, ZM521Q and Pop62SRQ); and determining grain yield potential. The study was conducted in Mozambique for DM and in Zimbabwe for MSV, during 2003 to 2006. Surveys were conducted in Manica and Angonia districts in Mozambique to ascertain farmers’ perceptions and preferences for maize varieties, especially QPM. Participatory rural appraisal tools that included semi-structured questionnaires and focus group discussions were used to collect data. Results showed that farmers predominantly grew open pollinated varieties and fewer normal maize hybrids (non-QPM), and grain yield was estimated to be very low (0.2 to 0.6 t ha-1). Results showed that drought and insect pests were the dominant constraints to maize productivity in Mozambique, while diseases were ranked third. Downy mildew disease and MSVD were considered to be the most important diseases reducing maize productivity. Farmers also showed high preference for high yielding and early maturity cultivars in all areas. Predominantly, farmers were still using their local landraces because of sweet taste, particularly for home consumption and flint grain for storage. Farmers’ access to improved cultivars was limited due to high seed prices on the local market. Research priorities as perceived by the farmers included breeding for resistance to drought, grain weevils and diseases and sweetness. Generally, farmers showed little knowledge of QPM varieties and the importance of this trait, but they observed that the few QPM varieties they knew had some weaknesses such as poor storability and susceptibility to DM and MSVD which required improvement. These results should be considered in breeding new cultivars, both normal and QPM. To improve DM and MSV disease resistance in QPM varieties, S1 recurrent selection was conducted in three QPM populations, Sussuma, ZM521Q and Pop62SRQ at Umbeluzi Research Station in Mozambique and at CIMMYT-Harare Research Quality protein maize (QPM) has high nutritional value, but production is threatened by downy mildew (DM) and maize streak virus disease (MSVD) among other constraints. There are few studies of DM and MSVD resistance in QPM cultivars. The objective of this study was to improve resistance to DM and MSVD in three QPM populations. This was realized through ascertaining farmers’ key production constraints and special preferences for cultivars; determining the utility of recurrent selection method for improvement of three QPM populations (SussumaS2, ZM521Q and Pop62SRQ); and determining grain yield potential. The study was conducted in Mozambique for DM and in Zimbabwe for MSV, during 2003 to 2006. Surveys were conducted in Manica and Angonia districts in Mozambique to ascertain farmers’ perceptions and preferences for maize varieties, especially QPM. Participatory rural appraisal tools that included semi-structured questionnaires and focus group discussions were used to collect data. Results showed that farmers predominantly grew open pollinated varieties and fewer normal maize hybrids (non-QPM), and grain yield was estimated to be very low (0.2 to 0.6 t ha-1). Results showed that drought and insect pests were the dominant constraints to maize productivity in Mozambique, while diseases were ranked third. Downy mildew disease and MSVD were considered to be the most important diseases reducing maize productivity. Farmers also showed high preference for high yielding and early maturity cultivars in all areas. Predominantly, farmers were still using their local landraces because of sweet taste, particularly for home consumption and flint grain for storage. Farmers’ access to improved cultivars was limited due to high seed prices on the local market. Research priorities as perceived by the farmers included breeding for resistance to drought, grain weevils and diseases and sweetness. Generally, farmers showed little knowledge of QPM varieties and the importance of this trait, but they observed that the few QPM varieties they knew had some weaknesses such as poor storability and susceptibility to DM and MSVD which required improvement. These results should be considered in breeding new cultivars, both normal and QPM. To improve DM and MSV disease resistance in QPM varieties, S1 recurrent selection was conducted in three QPM populations, Sussuma, ZM521Q and Pop62SRQ at Umbeluzi Research Station in Mozambique and at CIMMYT-Harare Research. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
|
5 |
Breeding for Cassava brown streak resistance in coastal Kenya.Munga, Theresia Luvuno. January 2008 (has links)
Cassava (Manihot esculenta Crantz ssp. esculenta) is the second most important food crop and a main source of income for the rural communities with potential for industrial use in the coastal region of Kenya. However, its productivity of 5 to 9 t ha-1 is low due to the low yield potential of the local cassava landraces caused by cassava brown streak disease (CBSD) among other biotic and abiotic constraints. Breeding for CBSD resistant varieties with farmer desired characteristics is hampered by limited information on the current status of the disease and farmers’ preferred characteristics of new CBSD resistant genotypes. In addition, there is a lack of an effective inoculation technique for cassava brown streak virus (CBSV) for screening genotypes for CBSD resistance. Information about the general combining ability (GCA) and specific combining ability (SCA) for CBSD above and below ground symptoms, fresh biomass yield (FBY) and fresh storage root yield (FSRY) (kg plant-1), harvest index (HI), dry matter % (DM %) and picrate score (PS) is limited and conflicting especially for the cassava germplasm in Kenya. These studies were carried out to update information on the status of CBSD, farmer’s preferences for cassava genotypes, and identify the most effective CBSV inoculation technique. In addition, the studies aimed to: determine the GCA and SCA for, and gene action controlling, the incidence and severity of above ground CBSD, root necrosis, FBY, FSRY, HI, DM %, and PS; and identify CBSD resistant progeny with farmers’ desired characteristics. A survey carried out in three major cassava-growing divisions in Kilifi, Kwale and Malindi Districts indicated that there was potential to increase production and productivity by increasing the area under cassava production and developing CBSD resistant genotypes that are early maturing, high yielding and sweet. In addition, CBSD was widely distributed, being present in 98.0% of the farms surveyed at a mean incidence of 61.2%. However, 99.0% of farmers interviewed lacked awareness and correct information about the disease. The genetic variability of cassava within the farms was low as the majority of farmers grew one or two landraces. Highly significant differences (P < 0.01) were observed among inoculation techniques for CBSV for which the highest infection rate of up to 92.0% was observed in plants inoculated by wedge grafting infected scion. Highly significant differences (P < 0.01) were observed among genotypes, between sites and their interaction for incidence of CBSD and root necrosis, while the differences among genotypes and the interaction between genotypes and the period of ratings were highly significant (P < 0.01) for the severity of CBSD and root necrosis. Above ground CBSD symptoms were not always associated with below ground CBSD symptoms and below ground CBSD symptoms were more severe at 12 months after planting (MAP) than at 6 MAP. Therefore, selecting cassava genotypes with resistance to below ground CBSD is more important than selection based on resistance to above ground CBSD and should be done after 12 months. Genotypes 5318/3 (exotic) followed by Msa140 and Plot4 (both local) had high resistance and can be used as new sources of resistance to root necrosis. Both GCA and SCA effects were highly significant with GCA sums of squares (SS) predominant over the SCA SS for most traits evaluated except for DM % at the clonal stage. These results indicate that although additive and non-additive genetic effects are involved in the inheritance of these traits, the additive genetic effects are more important except for DM %. Therefore breeding for CBSD-resistant genotypes that have characteristics desired by farmers in the coastal region of Kenya can be achieved through recurrent selection and gene pyramiding followed by participatory selection or use of a selection index that incorporates characteristics considered important by farmers. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
|
6 |
Development of high yielding pigeonpea (Cajanus cajan) germplasm with resistance to Fusarium wilt (Fusarium udum) in Malawi.Changaya, Albert Gideon. January 2007 (has links)
Pigeon pea [Cajanus cajan (L.) Millspaugh] is a very important grain legume crop for food, cash and firewood in Malawi. However, its production is affected by Fusarium wilt (Fusarium udum Butler), which causes up to 100% yield loss. The deployment of
resistant varieties would be an economical way to manage the disease, and for this, more information is needed on farmers' preferences for local landraces, how farmers and consumers can be involved in developing new varieties resistant to wilt disease, and the genetics of inheritance of resistance. This information would be used to devise a breeding strategy. A participatory rural appraisal was used in the southern region of Malawi to identify pigeonpea production and marketing constraints. Results showed that Fusarium wilt was the most prevalent and destructive disease of pigeonpea in the area. Other constraints included pests, flower abortion, low yields, and low soil fertility. Local landraces accounted for 84% of the pigeonpea production in Malawi. Local landraces were preferred due to their fast cooking time, taste, and the high prices they earn the farmer. Participatory variety selection was used to identify landraces with desirable traits that could be used in the breeding programme. Farmers and buyers selected ten local landraces which were used in the genetic improvement programme. Pigeonpea local landraces and international Crops Research Institute for the Semi-Arid Tropics (ICRISAT) genotypes were evaluated for wilt resistance, yield, and secondary traits at three sites over three seasons. Most of the landraces were susceptible to wilt and late maturing. However, AP10, a local landrace, was high yielding and resistant to wilt and outperformed ICRISAT varieties. This local landrace showed promise for use as a source material for Fusarium wilt resistance in other locally adapted farmer-preferred varieties lacking resistance. The local landraces needed genetic improvement in wilt resistance, yield, early maturity, number of branches and seeds pod. Laboratory and screenhouse studies were performed to develop a new Fusarium wilt screening technique. Grains of finger millet, sorghum, and wheat were tested as media for multiplying F. udum isolates. Pathogenicity tests were done on Bunda College and Bvumbwe Research Station isolates. The Bunda isolate was then used in an infested-seed
inoculation technique against eight differential cultivars. The results showed that finger millet, sorghum and wheat were equally effective for rapid multiplication of F. udum isolates. Wheat grain showed the best results for pathogen multiplication and
inoculation, due to the large seed size for easy handling. The inoculation process involved placing infested wheat grain on bruised pigeonpea roots and transplanting into soil in pots. The infested seed inoculation technique, which is the first of its kind for
pigeonpea, was effective in screening pigeonpea for wilt resistance. The selected landraces were crossed with wilt resistant testers in a 12 lines x 4 testers mating scheme, and 48 F1 crosses were generated. These F1 crosses were evaluated for wilt resistance, yield, and secondary traits. The variations among F1 crosses for wilt and secondary traits were due to additive gene action in both parents and the dominance effects arising from the interactions of parents. Parental lines, with good combining ability effects for wilt resistance (AP2, AP3, and AP4), days to 50% flowering, seed pod, plant height, stem diameter, and number of primary and secondary branches were identified, while ICEAP00554 (tester) was a good general combiner for wilt
resistance and days to 50% flowering. These lines would be useful in breeding for Fusarium wilt resistance in farmer-preferred pigeonpea genotypes in Malawi or similar environments. Specific F1 crosses were identified with significant SCAs for wilt
resistance, days to 50% flowering, and secondary branches. The significance of GCA and SCA effects, which indicated importance of both additive and non-additive gene effects, respectively, suggested that both selection and hybridisation would be useful to improve the resistance in farmer-preferred varieties. Segregation analyses were conducted on F2 populations to determine the resistance to susceptibility phenotypic ratios. The Chi-square analyses showed that resistance to wilt was dominant over susceptibility in most F2 populations. The segregation ratios of 3:1, 13:3, 15:1, and 9:7 (R:S) indicated that either one dominant gene, or two inhibitory genes, or two independent dominant genes, or two complementary genes, respectively,
were conferring wilt resistance in these crosses. Involvement of only a few genes governing wilt resistance suggested few complications, if any, in breeding for this trait in these locally adapted pigeonpeas. The Pedigree breeding method would be recommended for incorporating these traits. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
|
7 |
Participatory-based development of early bulking cassava varieties for the semi-arid areas of Eastern Kenya.Kamau, Joseph Wainaina. January 2006 (has links)
Cassava (Manihot esculenta Crantz) is an important food security crop in the semi-arid
areas of Eastern Kenya. It provides food for more days in a calendar year than any other
crop grown. Kenya has relied on varieties bred in other countries and because of this,
local breeding methodologies and expertise are lacking. Access to appropriate varieties
and adequate planting materials are major limiting factors to cassava production.
Farmers grow late bulking landraces that take up to 18 mo to harvest. Efforts to introduce
early bulking genotypes from IITA failed because of poor end-use quality. Local cassava
breeding is necessary to alleviate the production constraints. Before a local breeding
program can be established, farmers' preferences and production constraints must be
identified and methodology appropriate to the Kenyan environment must be developed.
The aims of this study were to identify farmer production constraints and preferences, to
develop methods appropriate for cassava breeding in the semi-arid areas of Kenya,
develop a population segregating for bulking period to estimate genetic variances that
would explain the gene effects controlling yield components, and through participatory
selection identify varieties that combine early bulking and preferred end-user traits.
PRA tools, focus groups and individual interviews were used to identify production
constraints and farmer preferences for cassava varieties. The PRA found that farmers
grow 13 landraces in the area and 11 production constraints were identified and
prioritised. The four most limiting in the order of importance were drought, lack of
planting material, pests and diseases.
Crosses between cassava varieties often do not produce much seed and the seed
produced does not germinate well. Germination studies were done with open pollinated
seeds to identify conditions favourable for seed germination in Kenya. The highest
germination of the seeds was at 36°C. The control seeds had a higher germination
percent (77%) compared to the seeds which were pre-heated at 36°C (57%).
Crosses were made between selected IITA and local Kenyan genotypes following the
NC 11 mating design to develop new genotypes which combine early bulking along with
other farmer/end-user preferred characteristics. The hybrid progenies were evaluated in
a seedling trial and clone genotypes advanced to a clonal trial and performance trial. The
clonal trial was destroyed by red spider mites and cassava green mites, and only the tolerant 225 genotypes were planted in a performance trial that was harvested at 6, 7
and 8 mo after planting. The SCA effects were estimated to be 57% to 75% for most of
the traits, except root number, which was mainly controlled by GCA effects (55%).
Participatory selection of genotypes that combined early bulking and end-user qualities
at the 7 and 8 mo after planting was done by farmers. Thirty genotypes that combined
early bulking and end-user qualities were identified and ranked according to their
performance in both agronomic and end-use traits using a selection index. A number of
selected genotypes yielded more than three times the yield of the best parents, showing
strong progress in breeding. Combining the farmers' preference aggregate score and the
selection index based on the agronomic data, assisted in the final identification of the
best genotypes developed in the breeding process. These results clearly demonstrated
that it is possible to breed early bulking varieties with good end-use quality in the semiarid
areas. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
|
8 |
Genetic improvement of Zambian maize (Zea mays L.) populations for resistance to ear rots and a survey of associated mycotoxins.Mweshi, Mukanga. January 2009 (has links)
Maize ear rots are among the most important impediments to increased maize production in Africa. Besides yield loss, they produce mycotoxins in their host whose contamination has been linked to several human and animal mycoses. The main objectives of the studies reported on in this thesis were (i) to investigate farmer perceptions of maize ear rot disease and prospects for breeding for host plant resistance in Zambia; and (ii) to establish the levels of incidence and extent of maize ear rot infection as well as the level of mycotoxins in the maize crops of smallholder farms in central and southern Zambia; (iii) to appraise the field inoculation techniques and assess them for their suitability for the Zambian environmental conditions, (iv) to determine the combining ability of Zambian maize populations for resistance to ear rot and investigate the genetic basis of this resistance; and (v) to investigate both direct and indirect responses to full-sib selection for ear rot resistance in Zambian maize populations. A participatory rural appraisal (PRA) was conducted in four communities, involving a total of 90 farmers. Participatory methods were used, such as focused group discussions, group interviews, participant scoring and ranking. Farmers ranked and scored the various constraints affecting their maize production in general and the maize ear rots in particular. Ear rots were ranked as the third most important biotic stress and it was evident that although farmers were aware of the disease, they were not aware of mycotoxins. This was reflected in the way they disposed of rotten maize: either by feeding livestock or eating it in periods of hunger. The survey of ear rots and mycotoxins was carried out in the Southern and Central Provinces of Zambia. A total of 114 farms were covered in the survey: maize samples were collected and both ear rot fungi and mycotoxins were isolated. Fusarium and Stenocarpella were the most frequently isolated fungi from smallholder farms. The levels of fumonisins on these farms ranged from 0.05 to 192 ppm, while those of aflatoxins were between 1.5 and 10.6 ppb. In 50% of the farmsteads surveyed, the mycotoxins, i.e. fumonisins and aflatoxins, exceeded the recommended FAO/WHO 1limits of 2 ppm and 2 ppb, respectively. Five field inoculation techniques namely, colonised toothpick, leaf whorl placement, ear top placement, spore suspension spray, and silk channel injection, were evaluated over three seasons in a series of experiments. It was found that the leaf whorl placement of inoculums, followed by colonized toothpick method, gave a constant ranking of genotypes across locations and years compared to the other three methods. In addition, the use of a mixture of ear rots as inoculum was as effective as its principal single species constituents. In the population diallel analysis, five broad-based maize populations were crossed in a diallel and evaluated under artificial ear rot inoculation using an inoculum mixture of three ear rot fungi, Aspergillus flavus, Fusarium verticilloides and Stenocarpella maydis at four locations in Zambia. The purpose was to estimate general (GCA) and specific combining ability (SCA) and investigate genotype x environment interaction. GCA effects were found not to be significant for disease severity but were significant for grain yield across environments. Populations with a strong GCA effect for disease severity across sites included PRA783244c3, Pop25, MMV600, and ZUCASRc2. Across sites, the F1 combinations, MMV600 x Pop25, ZUCASRc2 X Pop25, and Pop25 x PRA783244c2 had strong SCA effects for root lodging, ear drooping, husk cover and ear insect damage. In a related diallel analysis of 10 full-sib families derived from these populations, it was observed that resistant x susceptible families and their reciprocal crosses performed better than their resistant parents, suggesting an over dominant expression of resistance. Both maternal and non maternal effects were observed to be influencing resistance to ear rots. There was a preponderance influence of non-additive gene action. A response to full-sib recurrent selection was conducted in four locations in Central Zambia. Out of the 343 families created in 2005/6 season, 10% were selected from each population and recombined to create five new populations. These, with the original populations, were evaluated in four sites during the 2007/8 season. There was a net reduction in ear rot incidence and rot severity in the new synthetic population. Pop10 had the largest reduction in disease severity. The predicted gain per cycle was -4.1% and realized gain was -2.5% for disease incidence, and 0.19% and 19.4% for grain yield. Genetic variability was maintained though with low heritability estimates. Negative but at times strong association between grain yield and ear rot disease severity was detected suggesting that in general selecting for ear rot resistance would enhance grain yield in the five populations. Overall the importance of the ear rots and mycotoxins in compromising yield and health of the communities in Zambia, respectively, were confirmed and support the call to improve maize varieties for resistance to ear rots. The results indicate that the five populations could be enhanced for ear rot resistance through population improvement procedures such reciprocal recurrent selection that exploit both additive and non-additive variation. Selection might be compromised by the large genotype x environment interaction effects, and large reciprocal effects and their interaction with the environments. To enhance repeatability genotypes should be artificially inoculated, by placing the inoculum in the leaf whorl followed by colonized toothpick inoculation, and screened in many environments to identify genotypes with stable resistance to ear rots. / Thesis (Ph.D) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
9 |
Breeding, evaluation and selection of Cassava for high starch content and yield in Tanzania.Mtunda, Kiddo J. January 2009 (has links)
High starch content is an important component of root quantity and quality for almost all uses of cassava (flour, chips, and industrial raw material). However, there is scanty information on genetic variability for dry matter and starch contents and relatively little attention has been paid to genetic improvement of root dry matter content and starch content in Tanzania. The major objective of this research was to develop improved cassava varieties that are high yielding, with high dry matter and starch content for Tanzania and specifically to: i) identify farmers’ preferences and selection criteria for cassava storage root quality characteristics and other traits of agronomic relevance for research intervention through a participatory rural appraisal; ii) determine the genotypic variability for starch quantity and dry matter content evaluated for three harvesting times in four sites; iii) determine the inheritance of dry matter and starch content in cassava genotypes; and iv) develop and evaluate clones for high storage root yield, high dry matter content and starch. Attributes desired by farmers were yield, earliness, tolerance to pests and diseases. The complementing attributes associated with culinary qualities were sweetness, good cookability, high dry matter content or mealyness and marketability. The preliminary study conducted to evaluate the variability in root dry matter content (RDMC) and starch quantity and yield of ten cassava cultivars indicated that RDMC ranged from 29 to 40% with the mean of 34.3%. The RDMC at 7 months after planting (MAP) was higher than at 11 and 14 MAP. Starch content (StC) ranged from 20.3% to 24.9% with the mean of 22.8%. The StC differed significantly between cultivars, harvesting time and sites. An increase in StC was observed between 0 and 7 MAP, followed by a decline between 7 and 11 MAP, and finally an increase again noted between 11 and 14 MAP. However, for most of the cultivars at Kibaha an increase in StC between 11 and 14 MAP could not surpass values recorded at 7 MAP. At Kizimbani, cultivar Kalolo and Vumbi could not increase in StC after 11 MAP. At Chambezi and Hombolo, a dramatic gain in StC was observed for most of the cultivars between 11 and 14 MAP. Starch yield ranged from 0.54 to 4.09 t ha-1. Both StC and fresh storage root yield are important traits when selecting for commercial cultivars for starch production. Generation of the F1 population was done using a 10 x 10 half diallel design, followed by evaluation of genotypes using a 4 x 10 á-lattice. Results from the diallel analysis indicated that significant differences in fresh storage root yield (FSRY), fresh biomass (FBM), storage root number (SRN), RDMC, starch content (StC), and starch yield (StY), and cassava brown streak disease root necrosis (CBSRN) were observed between families and progeny. The FSRY for the families ranged from 15.0 to 36.3 t ha-1; StC ranged from 23.0 to 29.9%; RDMC ranged from 31.4 to 40.1%; and StY ranged from 3.3 to 8.3 t ha-1. The cassava mosaic disease (CMD) severity ranged from 1.7 to 2.7, while cassava brown streak disease (CBSD) severity for above ground symptoms ranged from 1.0 to 1.9. Additive genetic effects were predominant over non-additive genetic effects for RDMC, StC, and CBSRN, while for FSRY, FBM, SRN, and StY non-additive genetic effects predominated. Negative and non-significant correlation between RDMC and FSRY was observed at the seedling stage (r=-0.018), while at clonal stage the correlation was positive but not significant (0.01). The RDMC and StC were positive and significantly correlated (r=0.55***) at clonal stage. However, the StC negatively and non-significantly correlated with FSRY (r=- 0.01). High, positive and significant correlation (r=0.94; p.0.001) was observed between the StY and FSRY at clonal stage. High, positive and significant correlations between the seedling and clonal stage in FSRM (r=0.50; p.0.01), RDMC (r=0.67; p.0.001), HI (r=0.69; p.0.001), and SRN (r=0.52; p.0.01) were observed, suggesting that indirect selection could start at seedling stage for FSRM, RDMC, HI, and SRN. The best overall genotype for StC was 6256 (40.9%) from family Kiroba x Namikonga followed by genotype 6731 (40.6%; Vumbi x Namikonga). Among the parents, Kiroba and Namikonga were identified as the best combiners in terms of GCA effects for StC. Genotype 6879 from family Vumbi x AR 42-3 had the highest StY value of 34.8 t ha-1 followed by genotype 6086 (30.4 t ha-1; Kalolo x AR 40-6). Among the parents, Kalolo and AR 42-3 were identified as good combiners for the trait. Mid-parent heterosis for StC ranged from 41.6 to 134.1%, while best parent heterosis ranged from 30.4 to 119.6%. Genotype KBH/08/6807 from family Vumbi x TMS 30001 had the highest mid-and best parent heterosis percentage for StC. For StY, mid-parent and best parent heterosis ranged from 168.0 to 1391.0%, and from 140.4 to 1079.0%, respectively, with the genotype 6879 (Vumbi x AR 42-3) exhibiting the highest mid- and best parent heterosis percentage for StY. Improvement for StC, RDMC, and CBSRN may be realized by selecting parents with the highest GCA effects for the traits and hybridize with those that combine well to maximize the positive SCA effects for the StC, RDMC and CBSRN. Selected genotypes from the clonal stage will be evaluated in preliminary yield trial and advanced further to multi-locational trials while implementing participatory approaches involving farmers and processors in selection. New promising lines should be tested at different sites and the best harvesting dates should be established. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
10 |
Breeding investigations for black Sigatoka resistance and associated traits in diploids, tetraploids and the triploid progenies of bananas in Uganda.Barekye, Alex. January 2009 (has links)
Reduced banana yield owing to black Sigatoka Mycosphaerella fijiensis Morelet is a threat to the livelihoods of Ugandan subsistence farmers who depend entirely on the banana crop for food security. The objectives of this investigation were to: (i) assess farmers’ knowledge of black Sigatoka disease in central Uganda; (ii) document the qualities farmers would desire in the banana genotypes to be developed for black Sigatoka resistance; (iii) appraise the methods for assessing black Sigatoka resistance in diploid banana populations; (iv) determine the phenotypic variation for black Sigatoka resistance and agronomic traits in diploid and tetraploid bananas; (v) determine the influence of tetraploid and diploid parents on the black Sigatoka resistance and agronomic traits in the triploid progenies; and (vi) evaluate 2x by 2x banana progenies for yield and black Sigatoka resistance. A survey that focused on low and medium banana production zones in Uganda established that there was limited awareness of black Sigatoka disease as a constraint on banana production in the areas surveyed. It was also established that farmers liked local bananas because of their superior taste, early maturity, and marketability. There were farmers who had been exposed to new black Sigatoka resistant materials but never liked these new banana materials because of poor taste and lack of market. Farmers desired new banana materials with good taste on cooking, heavy bunches, resistance to pests and diseases, drought tolerance, and early maturing capacity in that order. The results indicated that the banana farmers in Uganda attached more importance to food quality attributes than to production attributes especially when considering new banana materials. This suggested that farmers mainly grow bananas for consumption. Three black Sigatoka assessment methods, youngest leaf spotted, disease development time and area under disease progress curve (AUDPC) were appraised using a diploid population. All the three methods were able to classify the diploid accessions into resistant and susceptible clones. The cultivar rankings of AUDPC correlated strongly with the rankings of disease development time. The cultivar rankings of AUDPC correlated positively with the rankings of youngest leaf spotted method. The youngest leaf spotted at flowering and AUDPC predicted significantly total number of leaves at flowering (R2 = 0.53). Overall AUDPC had the highest coefficient of determination (R2=0.84) in assessment of banana diploids for black Sigatoka resistance indicating that it accounted for the highest variation in disease response observed among the diploid clones. From this investigation it was recommended that AUDPC should be used to assess resistance on black Sigatoka in Musa species. A phenotypic analysis on the diploid and synthetic tetraploids, and a molecular analysis using RAPD markers on the tetraploid population were conducted. Results indicated that the diploid population had significant (P<0.001) variation for plant height, plant girth, days from flowering to harvest, bunch weight, number of suckers, youngest leaf spotted, total leaves at flowering, area under disease progress curve, and number of functional leaves at harvest. Principal component analysis showed that plant height and girth explained most of the variation observed in the diploid population. In the tetraploid population, significant differences were observed for plant height, plant girth, and number of suckers (P<0.05). In the tetraploids principal component analysis, indicated that youngest leaf spotted and total leaves at flowering had higher loadings on principal component one. Genetic distances computed from RAPD markers indicated limited genetic variability in the tetraploid population. Another investigation was also carried out to determine the influence of tetraploid and diploid parents on black Sigatoka resistance and agronomic traits in the triploid progenies generated from tetraploid-diploid crosses. The results indicated that diploids transferred black Sigatoka resistance to triploid progenies as measured by disease development over time, the number of functional leaves at flowering and at harvest. On the other hand, the female synthetic tetraploids influenced plant height and bunch weight in the triploid progenies generated from tetraploid-diploid crosses as observed from triploid progeny correlations and parent-offspring regressions. Therefore, it is important to select tetraploids with heavy bunch weights to generate high yielding triploids in tetraploid-diploid crosses. Lastly, this thesis investigated the relationship between bunch weight and black Sigatoka resistance traits in 2x by 2x progenies generated using a random polycross design. Phenotypic correlations revealed strong positive relationships between bunch weight with total leaves at flowering, youngest leaf spotted, plant girth, and days from planting to flowering among the 2x by 2x progenies. Linear regression analysis indicated that girth, total fingers and finger length significantly predicted bunch weight (R2=0.67). However, days from planting to flowering, and total leaves at flowering had strong indirect effects on bunch weight via plant girth. The results imply that selection for parents with good combining ability for girth, finger length and total fingers can improve bunch weight in a diploid population. / Thesis (Ph.D.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
|
Page generated in 0.0744 seconds