• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 41
  • 41
  • 12
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of the plant growth promoting rhizobacteria (PGPR) on Nicotiana benthamiana viral susceptibility

Nyamuvurudza, Spiwe January 2017 (has links)
A dissertation submitted in partial fulfilment of the requirements of the degree of Master of Science in Environmental science School of Animal, Plant and Environmental Sciences University of Witwatersrand, Johannesburg. March 2017. / Plant growth promoting rhizobacteria (PGPR) promotes plant growth in a variety of modes of action and also suppresses several phytopathogens causing plant diseases. There is evidence that Pseudomonas strains are able to induce systemic resistance, thereby enhancing the defensive capacity of many plant species, and they do so without any negative impact on the environment. Currently, many agricultural systems rely more on the use of chemical pesticides to combat plants diseases. The chemicals have several negative impacts on both human health and the environment. Therefore, there is need to investigate the ability to fight plant pathogens of alternatives like the Pseudomonas spp that do not harm the environment. Several strains of this genus are yet to be tested to see if they induce systemic resistance. Previous studies showed that bio surfactants produced by Pseudomonas koreensis exhibited strong effect against oomycetes P. ultimum in tomato plants. Induced systemic resistance (ISR) potential of P. koreensis following exposure to viruses has not been fully demonstrated to date. This study sought to investigate whether this strain has an effect on viruses and if it is able to induce systemic resistance against viral pathogens. The study started by growing the model plant N. benthamiana. The second stage involved carrying out assays of tobacco mosaic virus (TMV) after inoculating this virus in three bio treatments: (i) seed treatment of N. benthamiana with P. koreensis (referred to as the early treatment), (ii) root treatment at the transplanting stage (late treatment) and (iii) the control. In bio treatments (i) seeds were first sterilized by dipping them into 70% alcohol for 3 minutes and 0.1 % HgCl2 for 1 minute and washing them with distilled water. Each seed was then soaked into 20ml of bacteria suspension for 30 minutes and in (ii) a litre of P. koreensis culture was then poured onto the roots of 36 N. benthamiana plants. The bacteria suspension was added at 107 colony forming units per gram of soil to each tray. It was observed that disease severity was lower in the P. koreensis plant treatments than for the control. Results of this investigation have shown that P. koreensis can induce systemic resistance in foliar parts when plant seeds or roots are inoculated with this strain. This was demonstrated by separation of plant growth promoting rhizobacteria (PGPR) bacteria and TMV. Seeds and roots were inoculated with bacteria while the leaves were inoculated with TMV. The early bio treatment had the lowest mean number of necrotic lesions, and exhibited the mildest effects from TMV compared to the late bio treatment and control. Plants in the late bio treatment were moderately affected while the control was severely affected (P˂0.0001) ˂0.05. The early and the late bio treatment both had higher leaf surface area than the control; (P˂0.0001) ˂0.05. The early bio treatment lost the fewest leaves, and the late bio treatment lost a moderate number while the control lost the highest number (P˂0.0001)˂0.05.The reduced symptoms exhibited by plants inoculated with P. koreensis is an indication that P. koreensis has anti-viral activity against TMV. It was concluded that P. koreensis can reduce plant‟s viral susceptibility and result in ISR. It is hence proposed that P. koreensis can be used as a biological control (bio control) agent against viruses. Key words: Tobacco Mosaic Virus (TMV), Pseudomonas koreensis (P. koreensis), induced systemic resistance (ISR) / LG2018
2

Salt Mass Balance Study and Plant Physiological Responses for an Enhanced Salt Phytoremediation System

Zhong, Han January 2011 (has links)
Salinity is one of the most severe environmental factors that limits global crop yield. Enhanced phytoremediation using plant growth promoting rhizobacteria (PGPR) has proven to be an effective and environmentally responsible approach to remove salt from the surface soil and reclaim salt-impacted soil for crop production. PGPR enhanced phytoremediation systems (PEPS) were applied to two research sites, Cannington Manor North (CMN) and Cannington Manor South (CMS) in southern Saskatchewan. The sites were impacted by brine leakage during upstream oil and gas production. A salt mass balance study was performed based on data collected from these two sites. Both sites were planted in June. Soil samples were taken in June 2009 (beginning of the season), August (midseason) and October (end of the season). Soil salinity changes throughout the season were monitored by measuring soil electrical conductivity (EC). The average surface soil ECe decreased from 3.7 dS/m to 3.1 dS/m at CMN, and from 10.2 dS/m to 9.2 dS/m at CMS in 2009 season. Plant samples that were collected in August and October were analyzed for sodium and chloride concentrations. These values were then converted into predicted ECe changes for the soil to compare with the actual changes in soil ECe. Plant uptake of NaCl was calculated to account for 25.2% and 28.1% of the decrease in surface soil ECe at CMN and CMS, respectively. However, plant samples were washed prior to salt content analysis. A considerable amount of salt could have been lost during the washing process. Several plant samples from other salt-impacted sites in Saskatchewan and Alberta were selected to examine salt loss due to tissue washing. The salt ions lost by washing were determined to be 44.4% for Na+ and 63.8% for Cl-. After the adjustment of plant NaCl uptake data by the loss due to washing, plant accumulation of NaCl accounted for 59.9% of the decrease in surface soil ECe at CMN and 56.1% at CMS. When plant uptake of K+ and Ca2+ were also taken into consideration by a simulation study, the decrease in surface soil ECe that was caused by plant uptake of salt ions accounted for 107.5% at CMN and 117.5% at CMS. This indicated that plants can have a significant role in the remediation of salt-impacted soil. The effects of PGPR (Pseudomonas spp. UW4 and Pseudomonas corrugata CMH3) treatment on selected physiological indicators, such as proline, superoxide dismutase (SOD), membrane leakage and photosynthesis, were examined on annual ryegrass (Lolium multiflorum). Plants were grown under three saline conditions: non-saline topsoil, non-saline topsoil spiked with NaCl to 10 dS/m, and high saline soil collected from a salt-impacted site diluted with non-saline topsoil to reach 10 dS/m. The shoot fresh weight of plants grown in spiked salt soil decreased by 74% and in diluted salt soil by 44%, respectively, compared to control soil. Both types of salt soil increased SOD activities by approximately 50%, proline concentrations by 20 to 25 fold, and membrane leakage levels by 1.6 to 2.8 fold. Significant impairment of photosynthetic performances, as indicated by the decreases in the chlorophyll fluorescence parameters Fv/Fm, yield and qP, and a parallel increase in qN, was also observed using Pulse Amplitude Modulation (PAM) fluorometry for plants in diluted impacted soil. PGPR moderately increased fresh weight and SOD activity. Both UW4 and CMH3 significantly increased proline concentration and lowered membrane leakage relative to untreated plants. Therefore, PGPR improve plant performance under salt stress by elevating proline levels, which can act as a quencher of destructive reactive oxygen species. PGPR treatment also restored all the chlorophyll fluorescence parameters nearly to the non-stressed level, indicating protection of photosynthetic tissues of PGPR treated plants under salt stress. Overall, PEPS was successfully applied to the salt-impacted sites. Plant uptake of salt played a major role in the decrease of surface soil ECe. PGPR’s role in enhancing plant performance under salt stress was suggested by the elevated proline concentrations, the decreased membrane leakage levels and the restored photosynthetic activity.
3

Identification of a novel bacteriocin, thuricin 17, produced by Bacillus thuringiensis NEB17

Gray, Elizabeth Jean January 2005 (has links)
Bacillus thuringiensis NEB17 is a plant growth promoting rhizobacterium that produces a compound that directly increases plant growth. The compound is a bacteriocin and we propose the name thuricin 17. Thuricin 17 is a novel peptide inhibiting the growth of Bacillus species/strains, displaying both bactericidal and static effects. Its molecular weight, estimated via SDS-PAGE and verified by MALDI-QTOF mass spectroscopy, is 3162 Da. The partial amino acid sequence was determined and is N-term---WTCWSCLVCAACSVELL, C-term-CAS. Heat and pH stability, production and susceptibility to proteolysis were conducted. Thuricin 17 is active in pH 1.00-9.25, stable above 60°C and produced in the late exponential growth phase. This is the first bacteriocin from a Bacillus PGPR and the first reported to increase plant growth. This work presents an original discovery regarding PGPR mechanisms.
4

Salt Mass Balance Study and Plant Physiological Responses for an Enhanced Salt Phytoremediation System

Zhong, Han January 2011 (has links)
Salinity is one of the most severe environmental factors that limits global crop yield. Enhanced phytoremediation using plant growth promoting rhizobacteria (PGPR) has proven to be an effective and environmentally responsible approach to remove salt from the surface soil and reclaim salt-impacted soil for crop production. PGPR enhanced phytoremediation systems (PEPS) were applied to two research sites, Cannington Manor North (CMN) and Cannington Manor South (CMS) in southern Saskatchewan. The sites were impacted by brine leakage during upstream oil and gas production. A salt mass balance study was performed based on data collected from these two sites. Both sites were planted in June. Soil samples were taken in June 2009 (beginning of the season), August (midseason) and October (end of the season). Soil salinity changes throughout the season were monitored by measuring soil electrical conductivity (EC). The average surface soil ECe decreased from 3.7 dS/m to 3.1 dS/m at CMN, and from 10.2 dS/m to 9.2 dS/m at CMS in 2009 season. Plant samples that were collected in August and October were analyzed for sodium and chloride concentrations. These values were then converted into predicted ECe changes for the soil to compare with the actual changes in soil ECe. Plant uptake of NaCl was calculated to account for 25.2% and 28.1% of the decrease in surface soil ECe at CMN and CMS, respectively. However, plant samples were washed prior to salt content analysis. A considerable amount of salt could have been lost during the washing process. Several plant samples from other salt-impacted sites in Saskatchewan and Alberta were selected to examine salt loss due to tissue washing. The salt ions lost by washing were determined to be 44.4% for Na+ and 63.8% for Cl-. After the adjustment of plant NaCl uptake data by the loss due to washing, plant accumulation of NaCl accounted for 59.9% of the decrease in surface soil ECe at CMN and 56.1% at CMS. When plant uptake of K+ and Ca2+ were also taken into consideration by a simulation study, the decrease in surface soil ECe that was caused by plant uptake of salt ions accounted for 107.5% at CMN and 117.5% at CMS. This indicated that plants can have a significant role in the remediation of salt-impacted soil. The effects of PGPR (Pseudomonas spp. UW4 and Pseudomonas corrugata CMH3) treatment on selected physiological indicators, such as proline, superoxide dismutase (SOD), membrane leakage and photosynthesis, were examined on annual ryegrass (Lolium multiflorum). Plants were grown under three saline conditions: non-saline topsoil, non-saline topsoil spiked with NaCl to 10 dS/m, and high saline soil collected from a salt-impacted site diluted with non-saline topsoil to reach 10 dS/m. The shoot fresh weight of plants grown in spiked salt soil decreased by 74% and in diluted salt soil by 44%, respectively, compared to control soil. Both types of salt soil increased SOD activities by approximately 50%, proline concentrations by 20 to 25 fold, and membrane leakage levels by 1.6 to 2.8 fold. Significant impairment of photosynthetic performances, as indicated by the decreases in the chlorophyll fluorescence parameters Fv/Fm, yield and qP, and a parallel increase in qN, was also observed using Pulse Amplitude Modulation (PAM) fluorometry for plants in diluted impacted soil. PGPR moderately increased fresh weight and SOD activity. Both UW4 and CMH3 significantly increased proline concentration and lowered membrane leakage relative to untreated plants. Therefore, PGPR improve plant performance under salt stress by elevating proline levels, which can act as a quencher of destructive reactive oxygen species. PGPR treatment also restored all the chlorophyll fluorescence parameters nearly to the non-stressed level, indicating protection of photosynthetic tissues of PGPR treated plants under salt stress. Overall, PEPS was successfully applied to the salt-impacted sites. Plant uptake of salt played a major role in the decrease of surface soil ECe. PGPR’s role in enhancing plant performance under salt stress was suggested by the elevated proline concentrations, the decreased membrane leakage levels and the restored photosynthetic activity.
5

Studies in biocontrol enumeration, characterization, and screening of rhizobacteria /

Raudales Banegas, Rosa Emilia, January 2008 (has links)
Thesis (M.S.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 89-99).
6

Identification of a novel bacteriocin, thuricin 17, produced by Bacillus thuringiensis NEB17

Gray, Elizabeth Jean January 2005 (has links)
No description available.
7

Induction of growth promotion and stress tolerance in arabidopsis and tomato by plant growth-promoting

Hu, Chia-Hui. Kloepper, Joseph. January 2005 (has links) (PDF)
Dissertation (Ph.D.)--Auburn University, 2005. / Abstract. Includes bibliographic references (p.83-96).
8

Plant growth promoting rhizobacteria and soybean nodulation, and nitrogen fixation under suboptimal root zone temperatures

Dashti, Narjes. January 1996 (has links)
No description available.
9

Evaluation of native rhizosphere bacteria for use as biological control agents against Pythium aphanidermatum root rot of European greenhouse cucumbers

Rankin, Lynda January 1992 (has links)
No description available.
10

Effect of <i>Arbuscular mycorrhizal</i> fungi and plant growth-promoting rhizobacteria on glomalin production

Adeleke, Adekunbi Basirat 15 September 2010
There is accumulating evidence that arbuscular mycorrhizal fungi (AMF) produce a glycoprotein called glomalin, which has the potential to increase soil carbon (C) and nitrogen (N) storage, thereby reducing soil emissions of carbon dioxide (CO2) and nitrous oxide (N2O) into the atmosphere. However, other soil microorganisms such as plant growth-promoting rhizobacteria (PGPR) that interact with AMF could indirectly influence glomalin production. The objectives of this study were to determine the effects of AMF and PGPR interactions on glomalin production and identify possible combinations of these organisms that could enhance C and N storage in the rhizosphere. The effects of AMF and PGPR interactions on pea (Pisum sativum L.) growth and correlations between glomalin production and plant growth also were assessed.<p> A series of growth chamber and laboratory experiments were conducted to examine the effect of fungal and host plant species on glomalin production by comparing the amounts of glomalin produced by Glomus clarum, G. intraradices, and G. mosseae in association with corn (Zea mays L.), in addition to examining differences in the ability of corn, pea, and wheat (Triticum aestivum L.) to support glomalin production by G. intraradices. There were no significant differences in glomalin production [measured in the rhizosphere as Bradford-reactive soil protein (BRSP)] by the three AMF species, whereas host plant significantly affected glomalin production. Specifically, higher BRSP concentrations were found in the rhizosphere of corn as compared to pea and wheat.<p> Additionally, the effect of long-term storage on the growth promoting traits of the PGPR strains selected; namely, Pseudomonas cepacia R55 and R85, P. aeruginosa R75, P. putida R105, and P. fluorescence R111 were investigated. These bacterial strains previously had been identified as PGPR, but had since undergone approximately twenty years of storage at -80¢ªC; thus, it was necessary to confirm that these strains had retained their plant growth promoting characteristics. Apparently, long-term storage had no significant adverse effect on the PGPR strains as all strains increased the total biomass of wheat significantly and demonstrated antagonism against fungal pathogens.<p> The possibility that spore-associated bacteria (SAB) could influence AMF associations, thereby affecting glomalin production, and subsequent crop yield potential was assessed. This was achieved by first isolating bacteria from disinfested spores of the AMF species and determining their potential as PGPR for wheat. According to fatty acid methyl ester (FAME) profiles, four genera of bacteria were isolated from AMF spores namely; Arthrobacter, Bacillus, Micrococcus, and Paenibacillus, of which Bacillus species were the most common SAB. None of these isolates, however, showed growth promoting abilities on wheat.<p> Based on the preliminary findings, the combined effects of the three AMF species and the five PGPR strains were examined on plant growth and glomalin production under gnotobiotic conditions using pea as the host plant. Interactions between G. intraradices and R75, R85, or R105 resulted in increased BRSP concentration in the mycorrhizosphere of pea. Additionally, significant interactions were observed between the AMF species and PGPR strains on BRSP concentration in pea rhizosphere under non-sterile conditions. As observed under sterile conditions, the co-inoculation of pea with G. intraradices and R75 or R85 increased BRSP concentrations in the rhizosphere of pea grown in non-sterile soil, although interaction effects were not significantly different from the control or when G. intraradices was applied alone. Significant AMF and PGPR interactions were observed to affect AMF colonization; however, the combination of these organisms did not significantly affect pea growth, nutrient uptake, and C and N storage in the plant rhizosphere. No correlations were detected between glomalin-related soil protein (GRSP), pea growth, nutrient concentrations in the plant tissue, and soil organic C and N content. This study demonstrated that although the potential exists to manipulate certain AMF and PGPR to enhance glomalin production, co-inoculation of AMF and PGPR did not enhance plant growth or C and N storage beyond that achieved by inoculation of either organism.

Page generated in 0.1088 seconds