• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 18
  • 15
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fitness consequences and the evolution of R gene resistance to pathogen infection /

Korves, Tonia M. January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Ecology and Evolution, December 2002. / Includes bibliographical references. Also available on the Internet.
12

Characterisation of gene sequences induced in barley after pathogen infection

Janse van Vuuren, Natasha 11 October 2011 (has links)
M.Sc. / Barley (Hordeum vulgare) production is a vital constituent of the South African economy. Many pathogens reside on barley, which lead to low quality and yield. One of the most prominent barley pathogens, Fusarium graminearum, is the causal agent of small grain scab. F. graminearum resistance to barley is regulated by multiple genes referred to as quantitative trait loci (QTL), which makes it difficult to breed for resistance in new cultivars. Each of these genes contributes to a specific defence area and collectively counteracts Fusarium infection and spread in the barley plant. The aim of this project was to isolate and identify induced genes after infection of three leave stage barley with F. graminearum. These genes were isolated through the use of Suppression subtractive hybridisation (SSH), cloned and then sequenced. From this data set three transcript derived fragments (TDFs) sharing homology to known genes were selected and their expression profiles were studied through Northern blot analysis. Three TDFs shared homology with known genes namely a putative protease inhibitor-related protein, a senescence associated gene, and a manganese superoxide dismutase (MnSOD). These TDFs were previously also recognised for their function in host pathogen interactions. The expression analysis done using Northern blots showed up-regulation of the three fragments after inoculation. These results indicated that all the TDFs studied may play a role in the defence reaction of barley infected with F. graminearum, where both senescence and proteinase inhibitors could limit infection as well as spread and MnSODs might be a protective enzyme against oxidative stress. The results of this study indicated that all of the identified TDFs had database matches to proteins identified during stress responses. Furthermore, the Northern blot results indicated that all the TDFs studied could play a role in the defence reaction of F. graminearum infected barley. These TDFs will form the basis of further studies into the interaction between barley and F. graminearum. The results form this study will add to our knowledge of the interaction between barley and a necrotrophic pathogen. This will aid in understanding how cereal pathogens deal with pathogen attack and will aid in development of new more tolerant barley cultivars.
13

Function, structure and evolution of the RXLR effector AVR3a of Phytophthora infestans

Bos, Jorunn Indra Berit. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
14

Genome wide association mapping and assessment of allelic variation in strigolactone synthesis genes involved in rice plant parasite interactions

Dimkpa, Stanley Obumneke Nyebuhi January 2014 (has links)
No description available.
15

Plasma membrane proteins differentially expressed in response to lps perception in arabidopsis thaliana

22 April 2015 (has links)
M.Sc. (Biochemistry) / Plant innate immunity occurs in two interconnected branches, the first being the recognition of pathogen conserved surface structures known as pathogen- or microbe-associated molecular patterns (P/MAMPs) by the plant plasma membrane pathogen recognition receptors (PRRs), leading to activation of P/MAMP-triggered immunity (P/MTI). The second branch involves the recognition of pathogen avirulence (Avr) genes by the corresponding plant disease resistance (R) genes, known as the ‘gene-for-gene‘ interaction, and results in a more efficient or stronger defence response, namely effector-triggered immunity (ETI). Lipopolysaccharide (LPS) acts as a P/MAMP that induces an innate immune response in both plants and animals. LPS, especially the lipid A component, has been shown to play a vital role in activating immune responses in animals. Other LPS components such as lipooligosaccharide (LOS) and the core-oligosaccharide have also been shown to trigger an immune response in plants such as Arabidopsis thaliana. In mammalian cells, LPS binds to the LPS-binding protein (LBP) forming a LPS-LBP complex, which binds to a Toll-like receptor 4/myeloid differentiation-2 (TLR4/MD-2) complex together with the co-receptor CD14, a glycosylphosphatidylinositol (GPI)-linked protein, and activates an immune response. To date, there is still no knowledge about the LPS receptor(s) in plants.....
16

Biochemical characterization of the polygalacturonase inhibiting protein from cotton

13 August 2012 (has links)
M.Sc. / Plants have evolved a complex array of biochemical pathways that enable them to recognise and respond to signals from the environment. At present, little is known about the signal transduction pathways that are activated during a plant's response to attack by a pathogen, although this knowledge is central to our understanding of disease susceptibily and resistance. A common form of plant resistance is the restriction of pathogen proliferation to a small zone surrounding the site of infection. In many cases, this restriction is accompanied by localized death of host tissues, known as the hypersensitive response. In addition to local defense responses, many plants respond to infection by activating defenses in uninfected parts of the plant. As a result, the entire plant is more resistant to a secondary infection. This systemic acquired resistance can persist for several weeks or more and often confers crossresistance to unrelated pathogens. Fungal polygalacturonases (PGs) catalyze the fragmentation and the solubilisation of the homogalacturonan in the plant cell wall. These enzymes might have important functions during plant colonization by a fungus. PGs have also been shown to activate plant defense responses, likely because they generate oligogalacturonides with elicitor activity from the plant cell wall. A polygalacturonase inhibiting protein (PGIP), found in the plant cell wall of many plants, forms a specific complex with fungal PGs and favours the accumulation of elicitor-active oligogalacturonides in vitro. An agarose diffusion assay was used to screen the extracts from Verticillium dahliae for PG activity and ensuing inhibition by purified cotton PGIP. Quantitative determination of differences in polygalacturonase activity in the extracts were performed using a reducing sugar assay. There may be more than one isoform of PG present since the polygalacturonases produced by fungi are likely to be to a mixture of exo- and endo-PGs. Polygalacturonase was therefore isolated from 18-day-old culture filtrates of V. dahliae. The enzyme was partially purified by means of ammonium sulphate precipitation and gel chromatography. The band responsible for PG activity was identified and characterized, having a molecular weight of approximately 28-31 kDa, and a pl of 5.1 - 5.9. Kinetic studies indicate a Km of 0.33% and V,„,,of 0.85 pmoles reducing units / min. A commercial preparation of endo-PG from Aspergillus niger was used as a control. This endo-PG had a molecular weight of 68 kDa and a pl point of 3.6 and 5.1, suggesting there were at least two isoforms of endo-PG present. Kinetic studies indicate a K m of 0.33% and V,,„ of 1.07 gmoles reducing units / min.
17

Comparative analysis of disease resistance related genes in rice. / CUHK electronic theses & dissertations collection

January 2004 (has links)
by Zeng Naiyan. / "December 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (p. 185-213) / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
18

Specificity of quantitatively expressed host resistance to Mycosphaerella graminicola /

Krenz, Jennifer E. January 2007 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 41-47). Also available on the World Wide Web.
19

The molecular battle between virulence weapons of Pseudomonas syringae and integrated defense responses of Arabidopsis thaliana

Kim, Min Gab, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 103-124).
20

Molecular analysis of turnip crinkle virus coat protein mutations

Zhan, Ye. January 2002 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: protein interaction; coat protein; resistance; arabidopsis; turnip crinkle virus. Includes bibliographical references (p. 58-62).

Page generated in 0.1385 seconds