• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards autonomous irrigation : comparison of two moisture sensing technologies, irrigation distribution analysis, and wireless network performance at an ornamental container nursery

Bailey, Daniel R. (Daniel Roger) 22 December 2011 (has links)
As ornamental container nurseries face diminishing water allocations, many are looking to automated irrigation solutions to increase their water application efficiency. This thesis presents the findings of a study conducted at a commercial container nursery to determine 1) whether a capacitance or load cell sensor was better suited for monitoring volumetric water content in the substrate; 2) if the actual irrigation distribution conformed to the expected pattern, how uniform were the weights of plants, and how these combined with plant canopy affected the leaching fraction; and 3) the reliability of the wireless network used to transmit the data to a central database. It was found that 1) the load cells outperformed the capacitance-based sensors because the load cells took an integrated measure; 2) the actual irrigation pattern followed the expected pattern, the variation of irrigation sections were low (C.V. = 0.06) and similar (C.V. ranging from 0.029 to 0.12), and unpruned plant canopies produced greater leaching fraction than pruned canopies (P < 0.18); and 3) wireless network transmission reliability was low (75.2%), suggesting that the system was not suitable for real-time irrigation control, but was sufficient for calculating irrigation length and monitoring net effective irrigation application and evapotranspirative consumption. / Graduation date: 2012

Page generated in 0.125 seconds