• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The potential use of uvasys sulfur dioxide sheets and packaging materials to retain 'Mauritius' litchi (litchi chenensis sonn.) fruit red pericarp colour

Malahlela, Harold Kgetja January 2019 (has links)
Thesis (MSc. (Horticulture)) -- University of Limpopo, 2019 / After harvesting litchi fruit, the red pericarp colour is rapidly lost resulting in discolouration and browning during storage and marketing. To mitigate this challenge, the South African litchi industry uses sulfur dioxide fumigation to retain litchi fruit red pericarp colour during extended storage and shelf-life. However, there are health concerns regarding the commercially used (SO2) fumigation for litchi pericarp colour retention due to high levels of SO2 residues in fruit aril. Therefore, this study aimed to explore the possibility of Uvasys slow release SO2 sheets to retain ‘Mauritius’ litchi fruit red pericarp colour when packaged in plastic-punnets and bags. Treatment factors were two packaging materials (plastic-punnets and bags), six SO2 treatments (control; SO2 fumigation and four SO2 sheets viz. Uva-Uno-29% Na2S2O5; Dual-Release-Blue35.85% Na2S2O5; Slow-Release-36.5% Na2S2O5 and Dual-Release-Green-37.55% Na2S2O5) and four shelf-life periods (day 0, 1, 3 and 5). ‘Mauritius’ fruit were assessed for pericarp Browning Index (BI), Hue angle (ho), Chroma (C*) and Lightness (L*). In this study, an interactive significant effect (P < 0.05) between packaging type and SO2 treatments was observed on ‘Mauritius’ fruit pericarp L*, C* and ho during shelf-life. Fruit stored in plastic-bags and treated with SO2 fumigation showed higher pericarp C* and L*, while SO2 fumigated fruit in plastic-punnets had higher pericarp ho. Lower pericarp BI was observed in SO2 fumigated fruit stored in plastic-bags, which showed less pericarp browning than fruit in other treatments. In general, commercial SO2 fumigation resulted in lower pericarp BI, and higher pericarp L*, C* and ho throughout the storage and shelf-life. Our correlation analyses results further showed that litchi fruit red pericarp colour was better preserved as SO2 treatment levels increased, especially in plastic-bags. In retaining ‘Mauritius’ litchi fruit red pericarp colour, Uvasys SO2 sheets were not effective when compared with commercial SO2 fumigation. However, commercially SO2 fumigated fruit were bleached throughout the storage and shelf-life. Furthermore, fruit from all treatments were spoiled due to decay and mould growth after day 5 of shelf-life. Inclusion of pathogen protectants is important in future research to demonstrate whether Uvasys SO2 sheet-packaging technology can retain ‘Mauritius’ litchi fruit pericarp colour. / Agricultural Research Council and National Research Foundation (NRF)
2

The combined effects of ozone, sulfur dioxide and simulated acid rain on the growth of three forest tree species

Chappelka, Arthur H. January 1986 (has links)
Nine-week-old yellow-poplar and green and white ash were exposed to various concentrations of O₃ (0.00 to 0.15 ppm) and/or SO₂ (0.08 ppm), 4 hr/d, 5d/wk in combination with simulated rain (pHs 5.6, 4.3, 3.0), 1 hr/d, 2 d/wk, for 5 or 6 wk under controlled laboratory conditions. Pollutant exposures resulted in alterations in seedling biomass accumulation, growth rates, changes in carbon allocation among plant parts and modification in physiological processes associated with gas exchange. Ozone (0.010 ppm) and SO₂ together caused a significant decrease in height growth and biomass and an increase in leaf area ratio (LAR) in yellow-poplar. Ozone and SO₂ exposures resulted in linear decreases and increases, respectively, in root dry weight, leaf area increase, relative growth rates of all yellow-poplar plant parts and unit leaf rate with decreasing rain pH. Chlorophyll content increased in both O₃ and SO₂ treatments with increasing rain acidity. In green and white ash experiments height growth was inhibited by O₃, SO₂ and O₃ + SO₂ for green ash, whereas only leaf dry weight was decreased by O₃ exposure in white ash. Decreasing rain pH resulted in linear decreases in root/shoot ratio (RSR) and LAR, for white ash. In green ash, a quadratic response to rain pH occurred with these growth variables. Ozone and O₃ + SO₂-treated green ash exhibited a significant quadratic response in leaf weight ratio with increasing rain acidity. Leaf area ratio and RSR exhibited linear increases and decreases, respectively, for O₃ and rain acidity. In SO₂-treated white ash with increasing white ash and yellow-poplar seedlings exposed to various O₃ concentrations and simulated rain for 5 and 6 weeks, respectively, increasing O₃ concentrations caused linear decreases in height and biomass of white ash. Linear decreases in root growth rate and biomass and RSR occurred with decreasing rain pH, across O₃ treatments. Ozone (0.05 or 0.10 ppm) caused linear decreases in these variables in combination with increasing rain acidity. For yellow-poplar, increasing O₃ concentrations caused linear increases in RSR and specific leaf area. At 0.05 and 0.10 ppm O₃, stem and leaf biomass, their relative growth rates and leaf area all decreased with decreasing rain pH. Ozone (0.10 ppm) exposure caused a decrease in stomatal conductance, and decreasing variable. rain pH resulted in a linear decrease in this A linear decrease in net photosynthesis also occurred with increasing rain acidity in O₃-treated (0.10 ppm) plants. These results demonstrate that gaseous pollutants in combination with simulated acid rain can have detrimental effects on growth of three forest tree species, under controlled laboratory conditions. / Ph. D.

Page generated in 0.1206 seconds