• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental study of imprinting and hydrodynamic instabilities in laser and soft X-ray driven targets

Meyer, Christophe January 1998 (has links)
No description available.
2

Stability limits and waves in toroidal configurations with finite plasma pressure

FERREIRA, ANTONIO C. de A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:30:26Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:36Z (GMT). No. of bitstreams: 1 00956.pdf: 10327962 bytes, checksum: 71ac2457f781bcc0e415fc355cccc8fe (MD5) / Tese (Doutoramento) / IPEN/T / Massachusetts Institute of Technology - Cambridge, Mass - MIT
3

Stability limits and waves in toroidal configurations with finite plasma pressure

FERREIRA, ANTONIO C. de A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:30:26Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:36Z (GMT). No. of bitstreams: 1 00956.pdf: 10327962 bytes, checksum: 71ac2457f781bcc0e415fc355cccc8fe (MD5) / Tese (Doutoramento) / IPEN/T / Massachusetts Institute of Technology - Cambridge, Mass - MIT
4

The Mid-Latitude Ionosphere: Modeling and Analysis of Plasma Wave Irregularities and the Potential Impact on GPS Signals

Eltrass, Ahmed Said Hassan Ahmed 26 March 2015 (has links)
The mid-latitude ionosphere is more complicated than previously thought, as it includes many different scales of wave-like structures. Recent studies reveal that the mid-latitude ionospheric irregularities are less understood due to lack of models and observations that can explain the characteristics of the observed wave structures. Since temperature and density gradients are a persistent feature in the mid-latitude ionosphere near the plasmapause, the drift mode growth rate at short wavelengths may explain the mid-latitude decameter-scale ionospheric irregularities observed by the Super Dual Auroral Radar Network (SuperDARN). In the context of this dissertation, we focus on investigating the plasma waves responsible for the mid-latitude ionospheric irregularities and studying their influence on Global Positioning System (GPS) scintillations. First, the physical mechanism of the Temperature Gradient Instability (TGI), which is a strong candidate for producing mid-latitude irregularities, is proposed. The electro- static dispersion relation for TGI is extended into the kinetic regime appropriate for High- Frequency (HF) radars by including Landau damping, finite gyro-radius effects, and tem- perature anisotropy. The kinetic dispersion relation of the Gradient Drift Instability (GDI) including finite ion gyro-radius effects is also solved to consider decameter-scale waves gen- eration. The TGI and GDI calculations are obtained over a broad set of parameter regimes to underscore limitations in fluid theory for short wavelengths and to provide perspective on the experimental observations. Joint measurements by the Millstone Hill Incoherent Scatter Radar (ISR) and the Su- perDARN HF radar located at Wallops Island, Virginia have identified the presence of decameter-scale electron density irregularities that have been proposed to be responsible for low-velocity Sub-Auroral Ionospheric Scatter (SAIS) observed by SuperDARN radars. In order to investigate the mechanism responsible for the growth of these irregularities, a time series for the growth rate of both TGI and GDI is developed. The time series is computed for both perpendicular and meridional density and temperature gradients. The growth rate comparison shows that the TGI is the most likely generation mechanism for the observed quiet-time irregularities and the GDI is expected to play a relatively minor role in irregular- ity generation. This is the first experimental confirmation that mid-latitude decameter-scale ionospheric irregularities are produced by the TGI or by turbulent cascade from primary irregularity structures produced from this instability. The quiet- and disturbed-times plasma wave irregularities are compared by investigating co-located experimental observations by the Blackstone SuperDARN radar and the Millstone Hill ISR under various sets of geomagnetic conditions. The radar observations in conjunction with growth rate calculations suggest that the TGI in association with the GDI or a cascade product from them may cause the observations of disturbed-time sub-auroral ionospheric irregularities. Following this, the nonlinear evolution of the TGI is investigated utilizing gyro-kinetic Particle-In-Cell (PIC) simulation techniques with Monte Carlo collisions for the first time. The purpose of this investigation is to identify the mechanism responsible for the nonlinear saturation as well as the associated anomalous transport. The simulation results indicate that the nonlinear E x B convection (trapping) of the electrons is the dominant TGI sat- uration mechanism. The spatial power spectra of the electrostatic potential and density fluctuations associated with the TGI are also computed and the results show wave cascad- ing of TGI from kilometer scales into the decameter-scale regime of the radar observations. This suggests that the observed mid-latitude decameter-scale ionospheric irregularities may be produced directly by the TGI or by turbulent cascade from primary longer-wavelength irregularity structures produced from this instability. Finally, the potential impact of the mid-latitude ionospheric irregularities on GPS signals is investigated utilizing modeling and observations. The recorded GPS data at mid-latitude stations are analyzed to study the amplitude and phase fluctuations of the GPS signals and to investigate the spectral index variations due to ionospheric irregularities. The GPS measurements show weak to moderate scintillations of GPS L1 signals in the presence of ionospheric irregularities during disturbed geomagnetic conditions. The GPS spectral indices are calculated and found to be in the same range of the numerical simulations of TGI and GDI. Both simulation results and GPS spectral analysis are consistent with previous in-situ satellite measurements during disturbed periods, showing that the spectral index of mid- latitude density irregularities are of the order 2. The scintillation results along with radar observations suggest that the observed decameter-scale irregularities that cause SuperDARN backscatter, co-exist with kilometer-scale irregularities that cause L-band scintillations. The alignment between the experimental, theoretical, and computational results of this study suggests that turbulent cascade processes of TGI and GDI may cause the observations of GPS scintillations that occur under disturbed conditions of the mid-latitude F-region ionosphere. The TGI and GDI wave cascading lends further support to the belief that the E-region may be responsible for shorting out the F-region TGI and GDI electric fields before and around sunset and ultimately leading to irregularity suppression. / Ph. D.
5

A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

Dieckmann, Mark Eric January 1999 (has links)
No description available.
6

Theoretical and Numerical Studies of Frequency Up-shifted Ionospheric Stimulated Radiation

Xi, Hong 22 October 2004 (has links)
Stimulated electromagnetic emission (SEE) produced by interactions of high-power radio waves with the Earth's ionosphere is currently a topic of significant interest in ionospheric modification physics. SEE is believed to be produced by nonlinear wave-wave interactions involving the electromagnetic and electrostatic plasma waves in the altitude region where the pump wave frequency is near the upper hybrid resonance frequency. The most prominent upshifted feature in the SEE spectrum is the broad upshifted maximum (BUM). In this study, the instability processes thought to be responsible to the BUM spectra in the SEE experiments are discussed and analyzed using theoretical and electrostatic particle-in-cell (PIC) models. From characteristics of this feature, a four-wave parametric decay process has been studied as a viable mechanism for its production. The object is to (1) investigate the early time nonlinear development of the four-wave decay instability by using theoretical and numerical simulation models, (2) study the variation of the four-wave decay instability spectral features for a wide range of plasma and pump wave parameters, and (3) access its possible role in the production of the BUM spectral feature. Results of this investigation show that there is good agreement between predictions of the proposed theoretical model and the numerical simulation experiments. The simulation electric field power spectrum exhibits many of the important features of the experimental observations. The numerical simulation results show that consideration of the full nonlinear development of the four-wave parametric instability is crucial in providing insight into the asymmetric nature of the wave frequency spectrum observed during the experiments. The velocity-space ring-plasma instability, another generation mechanism for the BUM spectra, is studied using a theoretical model. The theoretical calculations show that the growth rate is larger in the region of the upper hybrid wave than that of the electron Bernstein wave. In addition, the effects of various plasma parameters are analyzed and it is predicted that the BUM should be more prominent with a hotter ring, at the direction perpendicular to the magnetic field, or in a closer region of cyclotron harmonic. A detailed comparison of the velocity space ring-plasma instability and the four-wave parametric process is presented where both the differences and the possible relations are discussed. / Ph. D.
7

Study of parametric and hydrodynamic instabilities in laser produced plasmas

Nuruzzaman, Shelly January 2000 (has links)
No description available.
8

Collisionless shocks in the context of Laboratory Astrophysics / Chocs non-collisionnels dans le cadre de l'astrophysique de laboratoire

Grassi, Anna 26 October 2017 (has links)
Cette thèse s'inscrit dans le cadre de l'astrophysique de laboratoire. Nous abordons divers aspects de la physique des chocs non-collisionels en présence de flots de plasma relativistes dans des configurations d'intérêt pour les communautés astrophysique et de l’interaction laser-plasma (ILP). Notre approche repose sur la modélisation analytique et la simulation cinétique haute-performance, outil central pour décrire les processus d'ILP et la physique non linéaire à l'origine des chocs étudiés. Le code Particle-in-Cell SMILEI a été largement utilisé et développé au cours ce travail. Trois configurations physiques sont étudiées. L’instabilité Weibel en présence de faisceaux d'électrons contre-propagatifs alignés avec un champ magnétique externe est décrite. Les phases linéaires et non linéaires sont expliquées à l’aide de modèles théoriques confirmés par des simulations. La génération de chocs non-collisionels lors de l’interaction de deux plasmas relativistes de paires est étudiée en présence d’un champ magnétique perpendiculaire. L’accent est mis sur la comparaison des prédictions théoriques sur les grandeurs macroscopiques avec les simulations, ainsi que sur la définition du temps de formation du choc, l’ensemble de ces grandeurs étant d’une grande importance pour de futures expériences. Enfin, nous proposons un schéma permettant de recréer, en laboratoire, l’instabilité Weibel ionique par l'utilisation d'un laser intense. Les flots de plasmas produits ici sont plus rapides et denses que dans les expériences actuelles, conduisant à un taux de croissance et des champs magnétiques plus élevés. Ces résultats sont également important pour l’ILP à très haute intensité. / The work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity.
9

Heat Release Studies by pure Rotational Coherent Anti-Stokes Raman Scattering Spectroscopy in Plasma Assisted Combustion Systems excited by nanosecond Discharges

Sheehe, Suzanne Marie Lanier 14 November 2014 (has links)
No description available.

Page generated in 0.0482 seconds