• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Préparation à l'étude du plasma de quarks et de gluons dans ALICE : le détecteur V0 et les résonances de masses dans le spectromètre à muons

Nendaz, Fabien 22 September 2009 (has links) (PDF)
L'expérience ALICE au LHC va étudier dès 2010 le plasma de quarks et de gluons (QGP), état de la matière dans lequel les quarks et les gluons sont déconfinés. Le travail présenté ici a été effectué au sein de la collaboration ALICE, dans le but de préparer l'analyse des futures données expérimentales. Outre une approche théorique du QGP et de la symétrie chirale, nous y développons trois aspects expérimentaux : le sous-détecteur V0, l'étude des mésons de basses masses et la déconvolution. Tout d'abord, nous détaillons les mesures de luminosité et de multiplicité réalisables avec le V0. Ensuite, nous développons l'étude des dimuons dans le spectromètre à muons. Nous nous concentrons en particulier sur les mésons de basses masses : le rho, le omega et le phi. Enfin, nous présentons une façon d'améliorer les données du spectromètre : la déconvolution de Richardson-Lucy.
2

Préparation à l'étude du plasma de quarks et de gluons dans ALICE : le détecteur V0 et les résonances de masses dans le spectromètre à muons / Preparation of the study of the quark-gluon plasma in ALICE : the V0 detector and the low masses resonances in the muon spectrometer

Nendaz, Fabien 22 September 2009 (has links)
L'expérience ALICE au LHC va étudier dès 2010 le plasma de quarks et de gluons (QGP), état de la matière dans lequel les quarks et les gluons sont déconfinés. Le travail présenté ici a été effectué au sein de la collaboration ALICE, dans le but de préparer l'analyse des futures données expérimentales. Outre une approche théorique du QGP et de la symétrie chirale, nous y développons trois aspects expérimentaux : le sous-détecteur V0, l'étude des mésons de basses masses et la déconvolution. Tout d'abord, nous détaillons les mesures de luminosité et de multiplicité réalisables avec le V0. Ensuite, nous développons l'étude des dimuons dans le spectromètre à muons. Nous nous concentrons en particulier sur les mésons de basses masses : le rho, le omega et le phi. Enfin, nous présentons une façon d'améliorer les données du spectromètre : la déconvolution de Richardson-Lucy. / The ALICE experiment at LHC will study from 2010 the quark-gluon plasma (QGP), phase of the matter in which quarks and gluons are deconfined. The work presented here was done within the ALICE collaboration, for preparing the analysis of the incoming experimental data. Besides a theoretical approach of the QGP and of the chiral symmetry, we develop three experimental aspects: the V0 sub-detector, the study of the low mass mesons and the deconvolution. First, we detail the measures of luminosity and multiplicity that can be done with the V0. We then develop the study of the dimuons in the muon spectometer. We concentrate on the low masses mesons: the rho, the omega and the phi. Finally, we present a method for improving the spectrometer data: the Richardson-Lucy deconvolution.
3

Mesure des corrélations photon-hadron auprès de l'expérience ALICE au LHC pour l'étude du plasma de quarks et de gluons / Measurement of the gamma-hadron correlations with the ALICE experiment at the LHC for the study of the quark-gluon plasma

Vauthier, Astrid 26 September 2017 (has links)
La chromodynamique quantique (QCD), théorie actuellement utilisée pour décrire l’interaction forte, a prédit l’existence d’une transition de phase, à très haute température et/ou densité, vers un état de la matière nucléaire où les quarks et les gluons sont déconfinés : le Plasma de Quarks et de Gluons (QGP). Un tel milieu peut être produit en laboratoire, et la mesure de ses propriétés permet d’apporter un éclairage nouveau sur les mécanismes sur les mécanismes d’interactions entre les constituants ainsi que de tester la QCD dans des domaines inexplorés.Les collisions d’ions lourds ultra-relativistes délivrées par l’accélérateur LHC au CERN permettent d’obtenir les conditions thermodynamiques nécessaires à la formation du QGP. À l’aide d’une instrumentation diversifiée, l’expérience ALICE permet d’accéder à un grand nombre d’observables permettant de caractériser le QGP. Parmi celles-ci, la mesure de la fragmentation des partons (quarks et gluons) permet d’étudier en détail les mécanismes de perte d’énergie des partons dans le milieu et de sa redistribution dans l’état final, et peut également être comparée à des calculs théoriques modélisant, à partir de la QCD, l’interaction d’un parton énergétique avec le QGP qu’il traverse.Le travail de thèse présenté dans ce manuscrit s’articule autour de l’étude de la fonction de fragmentation par la mesure des corrélations photon-hadron en collisions proton-proton et proton-Plomb. Dans un premier temps, un travail de calibration en énergie du calorimètre électromagnétique de l’expérience ALICE a été réalisé, accompagné de la caractérisation des incertitudes de cette calibration. Dans un second temps, les corrélations photon-hadron, dont la difficulté majeure réside en l’identification des photons directs, ont été étudiées. Les résultats obtenus dans les deux systèmes de collisions démontrent la faisabilité de l’analyse qui pourra être étendue facilement aux collisions Plomb-Plomb périphériques. Enfin, ce travail montre que les incertitudes dominantes de la mesure seront réductibles avec les données prochainement délivrées par le LHC. / The quantum chromodynamics (QCD), the theory used at present to describe the strong interaction, predicts the existence of a phase transition, at very high temperature and/or density, towards a state of nuclear matter where quarks and gluons are deconfined : the Quark-Gluon Plasma (QGP). Such a medium can be produced in laboratory, and the measurement of its properties allows to give a new perspective on the mechanisms of interactions between the constituents as well as to test the QCD in unexplored domains.Ultra-relativistic heavy ion collisions delivered by the accelerator LHC at CERN allow to obtain the thermodynamical conditions necessary for the QGP to be formed. By means of a diversified instrumentation, the ALICE experiment allows to reach a large number of observables allowing to characterize the QGP. Among these, the measurement of the fragmentation of the partons (quarks and gluons) allows to study in detail the mechanisms of energy loss in the medium and its redistribution in the final state, and can also be compared with theoretical calculations, based on QCD, that model the interaction of an energetic parton with the QGP which is passing through.The work presented in this manuscript is articulated around the study of the fragmentation function via the measurement of the photon-hadron correlations in proton-proton and proton-Lead collisions. At first, a work on energy calibration of the ALICE experiment’s electromagnetic calorimeter was realized, along with the characterization of the uncertainties of this calibration. Secondly, the photon-hadron correlations, whose main difficulty is the identification of the direct photons, were studied. The results obtained in both systems of collisions demonstrate the feasibility of the analysis which can be easily widened to the peripheral Lead-Lead collisions. Finally, this work shows that the dominant uncertainties of the measurement will be reducible with the new data delivered by the LHC.

Page generated in 0.0958 seconds