• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tenké vrstvy plazmového polymeru na kovových substrátech / Thin plasma polymer films on metal substrates

Mach, Pavel January 2010 (has links)
The theoretical part of the thesis is focused on surface treatments, their evaluation from the point of view visual properties, plasma-enhanced chemical vapor deposition and analysis of thin layers prepared by plasma polymerization. The experimental part of the thesis deals with surface treatment of stainless steel AISI 304. Thin layers of pp-HMDSO (plasma-polymer) and of DLC are deposited on the steel´s surface for the purpose of preparing transparent layer, which protect steel´s surface against of making finger prints visible. As an objective method is chosen an immersion test in artificial sweat solution according to standard ČSN EN ISO 105-E04. Evaluation of the test is measured by a gloss-meter and by a colorimeter. Prepared layers are identificated by FTIR method.
2

Functional and complex topological applications of plasma polymerized ultrathin films

Anderson, Kyle D. 07 May 2012 (has links)
This study is focused on the fabrication of plasma polymerized ultrathin films and the elucidation of their unique properties with an emphasis on the solvent-less, dry polymerization process to introduce post-deposition functionality, robustness, and shape preservation. Two major classes of materials are the subject of this study: biological monomers, specifically the amino acids tyrosine and histidine and synthetic organic and inorganic monomers including acrylonitrile, 2-hydroxyethyl methacrylate, N-isopropylacrylamide, titanium isopropoxide and ferrocene. The unique chemical and physical properties of highly cross-linked ultrathin plasma polymerized amino acid and synthetic polymer films are demonstrated along with their functional response and robustness on both planar and complex surface structures. The work emphasizes the facile ability of plasma polymerization to create unique, tailored ultrathin coatings. Chemical functionality retention (OH, NH₂) of the tyrosine and histidine amino acids is demonstrated by the subsequent mineralization of gold or titania nanoparticles on the plasma polymerized ultrathin films using a wet chemical approach. Inorganic nanoparticle mineralization is further investigated as a method to modify the optical properties of composite nanocoatings. Plasma co-polymerization of tyrosine and synthetic monomers is used to create nanocomposite coatings with unique surface functionalities, responsive behavior, optical characteristics and a high level of integration between monomers. The fabrication of novel plasma polymerized Janus microspheres, micropatterned substrates and free-standing films also demonstrate numerous plasma polymerized materials which exhibit unique structural properties. Overall, facile plasma polymerization of novel, functional ultrathin films and complex topological coatings having potential biocompatible and optical applications is established.

Page generated in 0.0877 seconds