• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fractional Order Modeling and Control: Development of Analog Strategies for Plasma Position Control of the Stor-1M Tokamak

Mukhopadhyay, Shayok 01 May 2009 (has links)
This work revolves around the use of fractional order calculus in control science. Techniques such as fractional order universal adaptive stabilization (FO-UAS), and the fascinating results of their application to real-world systems, are presented initially. A major portion of this work deals with fractional order modeling and control of real-life systems like heat flow, fan and plate, and coupled tank systems. The fractional order models and controllers are not only simulated, they are also emulated using analog hardware. The main aim of all the above experimentation is to develop a fractional order controller for plasma position control of the Saskatchewan torus-1, modified (STOR-1M) tokamak at the Utah State University (USU) campus. A new method for plasma position estimation has been formulated. The results of hardware emulation of plasma position and its control are also presented. This work performs a small scale test measuring controller performance, so that it serves as a platform for future research efforts leading to real-life implementation of a plasma position controller for the tokamak.
2

Návrh a implementácia systému kontroly plazmy pre tokamak COMPASS / Design and implementation of the plasma control system for the COMPASS tokamak

Janky, Filip January 2016 (has links)
Design and implementation of the plasma control system Mgr. Filip Janky The COMPASS tokamak was recommissioned in 2007 and it needed new digital controllers for its experimental research. This thesis presents the design and imple- mentation of control of main plasma parameters such as plasma current, plasma position, plasma shape and electron density. Improved plasma current control with resetting set points suppresses overshooting and thus increases the length of the flat top phase. A method for estimating the plasma position, gain tuning for the controller and decreasing latencies and delays to obtain robust position control are presented. Lower delays improve plasma stability and decrease the frequency of disruptions. The plasma shape controller is a feedforward controller with a method to suppress oscillations which are coming from mutual inductance between power supplies controlling plasma horizontal position, plasma shape and plasma current, which all use the same coil. Averaged electron density is corrected in real-time according to the interferometer line of sight and a non-linearity of measurement. Controllers and their improvements described here, played a major role in achiev- ing H-mode scenario and fulfilling the experimental program. Keywords: tokamak, plasma current control, plasma position...

Page generated in 0.1429 seconds