• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 328
  • 227
  • 217
  • 100
  • 32
  • 10
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 987
  • 372
  • 327
  • 275
  • 119
  • 97
  • 96
  • 85
  • 80
  • 71
  • 70
  • 70
  • 60
  • 60
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microwave studies of radiation from plasmas

Aro, T. O. January 1964 (has links)
No description available.
42

Investigation of magnetofluiddynamic acceleration of subsonic inductively coupled plasma

Zuber, Matthew 09 March 2006 (has links)
Electromagnetic acceleration has the potential for various applications stemming from space electric propulsion systems to future air breathing hypersonic augmentation. Electromagnetic acceleration uses electromagnetic body force produced by the interactions of currents carried in plasma which is either externally applied or self-induced magnetic fields to accelerate the whole body of gas. Historically, these plasmas sources have been arc jets, shock tube and microwaves. Never has an electromagnetic accelerator been powered by an inductively coupled plasma (ICP) source. The von Karman Institute has experimentally investigated the acceleration of an electrically conductive fluid produce by a subsonic ICP source. This ICP source was powered with a 15 kW and 27.1 MHz radio frequency facility called the Minitorch. The electromagnetic acceleration was accomplished with the design, fabrication and testing of a linear Hall current magnetofluiddynamic accelerator (MFDA) channel. The channel was geometrically orientated into the Hall configuration to accounts for the large Hall Effect. This channel used a single pair of copper annulus electrodes powered by a 10 kW direct current power supply. The channel was water cooled and contained various diagnostics to provide greater insight to the electromagnetic acceleration process. This was the first successful magnetofluiddynamic acceleration of an ICP source and validates the proof of concept. One-dimensional MFD modeling was formulated and used to determine the necessary performance requirements of the MFDA channel E and B field subsystems. An interaction parameter of approximately 2.25 was required for the doubling of an inlet velocity of 300 m/sec. The required subsystem need to provide a current density was 6 Amps/cm2 with a magnetic field strength of 0.50 Tesla over an acceleration length of 0.1 meters. Additional the most critical constraint was the thermal management subsystem which was designed to overcome large heat transfer fluxes to achieve a steady state condition over a test run of 10 minutes. The dynamic pressure measured increase the inlet velocity 101% for an argon plasma flowing at 1.01 g/s at a magnetic field strength of 0.49 Tesla. his strong acceleration of the plasma was most notable near the region of the electrodes at the exit of the 0.1 m long channel. The central region of the plasma has less dynamic pressure increase corresponding to only a maximum of 15% increase in velocity at a magnetic strength of 0.49 Tesla. Experimental results showed that axial discharge voltages increased with increased magnetic fields, indicating a strong Hall Effect in the accelerator as expected. Theoretical analysis was accomplished using the one-dimensional equation of motion and was compared to utilizing only the momentum equation. Experimental force fluxes were compared to the calculated values of the one-dimensional equation of motion and momentum equation. The reference area for the current density was selected from intensity measurement using a high speed camera with the MFDA channel on. There was significant error in the analysis concerning using the momentum Lorentz force only versus the one-dimensional equations of motion; which included joule heating. This analysis summarized the necessity to include joule heating in the formulation of the problem.
43

Conformal field theory and turbulent systems

Coceal, Omduth January 1996 (has links)
No description available.
44

THE PROPAGATION OF ENERGETIC PARTICLES IN FINITE TEMPERATURE ASTROPHYSICAL PLASMAS.

DAVILA, JOSEPH MICHAEL. January 1982 (has links)
Solutions to the dispersion relation for waves propagating parallel to the static magnetic field in a plasma of arbitrary β are obtained. (β is the ratio of thermal to magnetic pressure.) Resonant scattering by these waves is evaluated. It is found that the magnetostatic approximation, used extensively in the past, breaks down for particles with pitch angles near 90°, and one must consider the more complicated process of particle scattering in electromagnetic turbulence. Many aspects of particle propagation in a finite temperature plasma can be discussed without assuming magnetostatic turbulence. This is accomplished by using a graphical method to obtain the solutions of the resonance condition. Results show that in a high β plasma, wave damping causes a gap, or hole, in μ-space where the resonant particle scattering rate is severely depressed. It is found that only high energy (γ ≥10⁵) electrons can be trapped within a typical supernova remnant. When the notion of electromagnetic resonance is applied to particle propagation in the interplanetary β ≤ 1) plasma, it is found that significant modifications to the conventional scattering picture must be made. It is found that a resonance gap exists which is similar to the one in a high β plasma. For electrons, this gap provides a natural explanation for scatter-free events. Theory predicts that these events should occur for kinetic energies T ≤ 300 keV while observations indicate that the majority have T ≤ 500 keV. For protons and energetic electrons, the scattering mean free path is critically dependent on the non-resonant scattering rate for particles within the gap. This fact provides a way to resolve the well known discrepancy between the theoretical and observational values for the mean free path, λ.
45

Electrostatic waves in non-uniform plasmas

White, A. C. January 1982 (has links)
No description available.
46

Spectroscopic studies of gaseous nebulae

McKenna, Fiona Christine January 1997 (has links)
No description available.
47

Acoustic plasmons and transverse modes in semimetals and semiconductors

Bennacer, Badis January 1991 (has links)
No description available.
48

Radiative properties of confined plasmas

Burnett, P. D. S. January 2002 (has links)
No description available.
49

The University of Sussex particle correlator : computer simulation of instrument response & observations in the foreshock and the magnetosphere

Mouikis, Christopher G. January 1994 (has links)
No description available.
50

The dynamics of the low energy plasma in the Jovian magnetosphere

McNutt, Ralph L. (Ralph Leroy) January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 1980. / Vita. / Bibliography: leaves 140-156. / by Ralph L. McNutt, Jr. / Ph.D.

Page generated in 0.0394 seconds