• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plasmon hybridization in real metals

January 2012 (has links)
By treating free electrons in metallic nanostructures as incompressible and irrotational fluid, Plasmon hybridization (PH) method can be used as a very useful tool in interpolating the electric magnetic behaviors of complex metallic nanostructures. Using PH theory and Finite Element Method (FENI), we theoretically investigated the optical properties of some complex nanostructrus including coupled nanoparticle aggregates and nanowires. We investigated the plasmonic properties of a symmetric silver sphere heptamer and showed that the extinction spectrum exhibited a narrow Fano resonance. Using the plasmon hybridization approach and group theory we showed that this Fano resonance is caused by the interference of two bonding dipolar subradiant and superradiant plasmon modes of E1u symmetry. We investigate the effect of structural symmetry breaking and show that the energy and shape of the Fano resonance can be tuned over a broad wavelength range. We show that the wavelength of the Fano resonance depends very sensitively on the dielectric permittivity of the surrounding media. Besides heptamer, we also used plasmon hybridization method and finite element method to investigate the plasmonic properties of silver or gold nano spherical clusters. For symmetric clusters, we show how group theory can be used to identify the microscopic nature of the plasmon resonances. For larger clusters, we show that narrow Fano resonances are frequently present in their optical spectra. As an example of asymmetric clusters, we demonstrate that clusters of four identical spherical particles support strong Fano-like interference. This feature is highly sensitive to the polarization of the incident electric field due to orientation-dependent coupling between particles in the cluster. Nanowire plasmons can be launched by illumination at one terminus of the nanowire and emission can be detected at the other end of the wire. With PH theory we can predict how the polarization of the emitted light depends on the polarization of the incident light. Depending on termination shape, a nanowire can serve as either a polarization-maintaining waveguide, or as a polarization-rotating, nanoscale half-wave plate. We also investigated how the properties of a nearby substrate modify the excitation and propagation of plasmons in subwavelength silver wires.
2

Mie and Finite-Element Simulations of the Optical and Plasmonic Properties of Micro- and Nanostructures

January 2012 (has links)
A Mie-based code is developed for multilayer concentric spheres. The code is used in conjunction with a finite-element package to investigate the plasmonic and optical properties of micro- and nanostructures. For plasmonic nanostructures, gold-silica-gold multilayer nanoshells are computationally investigated. A plasmon hybridization theory is used to interpret the optical tunability. The interaction between the plasmon modes on the inner core and the outer shell results in dual resonances. The low-energy dipole mode is red-shifted by reducing the spacing ( i.e. , the intermediate silica layer) between the core and the shell. This extra tunability allows the plasmon resonance of a multilayer nanoshell to be tuned to the near-infrared region from a visible silica-gold nanoshell whose gold shell cannot be further reduced in thickness. For multilayer nanoshells with reduced geometrical symmetry ( i.e. , the inner core is offset from the center), modes of different orders interact. The mixed interaction introduces the dipolar (bright) characteristic into the higher-order (dark) modes and improves their coupling efficiency to the excitation light. The excitation of the dark modes attenuates and red-shifts the dipole mode and gives it higher-order characteristics. For non-plasmonic structures, simulations have demonstrated that multilayered structures can either reduce or enhance the scattering of light. By adding an anti-reflection layer to as microsphere made of a high-index material, the scattering force can be dramatically reduced. The reduced scattering allows optical trapping of high-index particles. Additionally, the improved trapping is not largely sensitive to the refractive index or the thickness of the coating. The technique has the practical potential to lower the requirement on the numerical aperture of the microscope objectives, making possible the integration of the imaging and optical trapping systems. While the anti-reflection coating reduces scattering, the photothermal bubble (PTB) generated by gold nanoparticles by and large enhances the scattering of light. Transient PTBs are generated by super-heating gold nanoparticles with short laser pulses. Mie-based simulations predict that the scattering of PTBs strongly depends on the transient environment immediately surrounding the nanoparticles. A scattering enhancement of two-to-four orders of magnitude from PBT is demonstrated from both calculations and experiments. Lastly, the near-field coupling between different plasmonie structures for surface-enhanced Raman scattering is investigated. A gold-coated silicon-germanium nanocone substrate has been fabricated and characterized. Finite-element simulations reveal that individual nanocones generate strong tip enhancement with axially polarized light ( i.e. , light polarized along the vertical axis of the nanocone) while the enhancement from transversely polarized light ( i.e. , light polarized in the plane of the substrate) is relatively weak. By simply filling the valleys between nanocones with plasmonic gold nanoparticles, the performance of the substrate is improved with in-plane excitation. Simulations reveal strong coupling between nanoparticles and adjacent nanocones with transverse exactions. An over one order-of-magnitude improvement has been experimentally observed.

Page generated in 0.1376 seconds