• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nanocompósitos metálicos para aplicações em processos fotoquímicos intensificados: efeitos de plasmon em fotocatálise / Applications of metallic nanocomposites in enhanced photochemical processes: plasmon effects in photocatalysis

Michele Lemos de Souza 16 October 2013 (has links)
Na presente tese de doutorado, foram exploradas possibilidades para a aplicação de nanopartículas (NPs) metálicas plasmônicas (fenômenos ópticos intensificados) em processos de fotocatálise e em células solares de Si. Estratégias foram exploradas para a imobilização das NPs plasmônicas em TiO2 Degussa P25 (mistura anatase:rutila 4:1) para captação da radiação eletromagnética UV/visível e somente visível em processos fotocatalíticos; e de NPs de Cu em células solares de Si para processos de fotoconversão, contribuindo com a compreensão dos fenômenos de intensificação local de energia mediados pelas NPs, o qual ainda está em debate no cenário científico. Compósitos de P25+NPs Ag de diferentes arquiteturas (fios, esferas e fotorreduzidas), de P25+NPs Ag recoberta com uma camada de SiO2 e de P25+NPs Au foram desenvolvidos. A caracterização dos materiais foi realizada por meio de técnicas de espectroscopia UV-VIS, IR e Raman, área superficial, DRX e de microscopia eletrônica de varredura e de transmissão. Os efeitos das propriedades plasmônicas dessas nanopartículas foram avaliados na eficiência de fotodegradação de três corantes (alizarina vermelha S, vermelho do Congo e fenossafranina) e de fenol. Todos os materiais plasmônicos apresentaram bom desempenho catalítico, aumentando consideravelmente a velocidade e a porcentagem de fotodegradação sob radiação UV/visível, mas principalmente sob radiação visível (onde a fotodegradação catalisada por P25 é limitada). A comparação entre a fotodegradação de fenol pelo compósito P25+NPs Ag esferas e P25+NPs Ag@SiO2 permitiu concluir que a transferência de carga não é o fenômeno que governa o aumento da eficiência catalítica em comparação à fotodegradação catalisada por P25. O fenômeno de intensificação de radiação eletromagnética localizada por meio de LSPR foi observado também em células solares de silício de primeira geração (wafer) contendo NPs de Cu imobilizadas em sua superfície. Aumentos na densidade de corrente de curto-circuito de cerca de 8 % na região acima de 750 nm e de até 16% na potência destas células solares foram observados. / In this thesis, we explored possibilities for the application of metallic plasmonic nanoparticles (NPs) resulting in intensified optical phenomena processes in photocatalysis and Si solar cell. Different strategies were explored for the immobilization of plasmonic NPs on TiO2 Degussa P25 (mixture anatase: rutile 4:1) to capture electromagnetic radiation UV / visible and visible only in photocatalytic processes; and Cu NPs in Si solar cell for photoconversion processes, contributing with the understanding of the phenomena related to the localized ressonance energy mediated by NPs, which is still under debate in the scientific field. Composites of P25+Ag NPs of various architectures (wires, spheres and photoreduced) P25+Ag NPs coated with a layer of SiO2 and P25+Au NPs were developed. The material characterization was performed by means of UV-VIS, IR and Raman spectroscopies, BET surface area, XRD and scanning and transmission electron microscopy. The effects of plasmonic nanoparticles properties were evaluated in the photodegradation efficiency of three textile dyes (Alizarin Red S, Congo red and phenosafranine) and phenol. All plasmonic materials showed good catalytic performance, greatly increasing the kinetic and percentage of photodegradation under UV/visible, but mostly under visible light (where the photodegradation catalyzed by P25 is limited). The comparison between the photodegradation of phenol by P25+Ag sphere NPs and P25+Ag@SiO2 composite showed that the charge transfer is not the phenomenon that governs the increase in catalytic efficiency when compared to the photodegradation catalyzed by P25. The phenomenon of near field intensification through LSPR was also observed in first generation Si solar cells (wafer) containing Cu NPs immobilized on its surface. Increases in the short-circuit current density of about 8% in the region above 750 nm and up to 16% in the power of these solar cells were observed.
2

Nanocompósitos metálicos para aplicações em processos fotoquímicos intensificados: efeitos de plasmon em fotocatálise / Applications of metallic nanocomposites in enhanced photochemical processes: plasmon effects in photocatalysis

Souza, Michele Lemos de 16 October 2013 (has links)
Na presente tese de doutorado, foram exploradas possibilidades para a aplicação de nanopartículas (NPs) metálicas plasmônicas (fenômenos ópticos intensificados) em processos de fotocatálise e em células solares de Si. Estratégias foram exploradas para a imobilização das NPs plasmônicas em TiO2 Degussa P25 (mistura anatase:rutila 4:1) para captação da radiação eletromagnética UV/visível e somente visível em processos fotocatalíticos; e de NPs de Cu em células solares de Si para processos de fotoconversão, contribuindo com a compreensão dos fenômenos de intensificação local de energia mediados pelas NPs, o qual ainda está em debate no cenário científico. Compósitos de P25+NPs Ag de diferentes arquiteturas (fios, esferas e fotorreduzidas), de P25+NPs Ag recoberta com uma camada de SiO2 e de P25+NPs Au foram desenvolvidos. A caracterização dos materiais foi realizada por meio de técnicas de espectroscopia UV-VIS, IR e Raman, área superficial, DRX e de microscopia eletrônica de varredura e de transmissão. Os efeitos das propriedades plasmônicas dessas nanopartículas foram avaliados na eficiência de fotodegradação de três corantes (alizarina vermelha S, vermelho do Congo e fenossafranina) e de fenol. Todos os materiais plasmônicos apresentaram bom desempenho catalítico, aumentando consideravelmente a velocidade e a porcentagem de fotodegradação sob radiação UV/visível, mas principalmente sob radiação visível (onde a fotodegradação catalisada por P25 é limitada). A comparação entre a fotodegradação de fenol pelo compósito P25+NPs Ag esferas e P25+NPs Ag@SiO2 permitiu concluir que a transferência de carga não é o fenômeno que governa o aumento da eficiência catalítica em comparação à fotodegradação catalisada por P25. O fenômeno de intensificação de radiação eletromagnética localizada por meio de LSPR foi observado também em células solares de silício de primeira geração (wafer) contendo NPs de Cu imobilizadas em sua superfície. Aumentos na densidade de corrente de curto-circuito de cerca de 8 % na região acima de 750 nm e de até 16% na potência destas células solares foram observados. / In this thesis, we explored possibilities for the application of metallic plasmonic nanoparticles (NPs) resulting in intensified optical phenomena processes in photocatalysis and Si solar cell. Different strategies were explored for the immobilization of plasmonic NPs on TiO2 Degussa P25 (mixture anatase: rutile 4:1) to capture electromagnetic radiation UV / visible and visible only in photocatalytic processes; and Cu NPs in Si solar cell for photoconversion processes, contributing with the understanding of the phenomena related to the localized ressonance energy mediated by NPs, which is still under debate in the scientific field. Composites of P25+Ag NPs of various architectures (wires, spheres and photoreduced) P25+Ag NPs coated with a layer of SiO2 and P25+Au NPs were developed. The material characterization was performed by means of UV-VIS, IR and Raman spectroscopies, BET surface area, XRD and scanning and transmission electron microscopy. The effects of plasmonic nanoparticles properties were evaluated in the photodegradation efficiency of three textile dyes (Alizarin Red S, Congo red and phenosafranine) and phenol. All plasmonic materials showed good catalytic performance, greatly increasing the kinetic and percentage of photodegradation under UV/visible, but mostly under visible light (where the photodegradation catalyzed by P25 is limited). The comparison between the photodegradation of phenol by P25+Ag sphere NPs and P25+Ag@SiO2 composite showed that the charge transfer is not the phenomenon that governs the increase in catalytic efficiency when compared to the photodegradation catalyzed by P25. The phenomenon of near field intensification through LSPR was also observed in first generation Si solar cells (wafer) containing Cu NPs immobilized on its surface. Increases in the short-circuit current density of about 8% in the region above 750 nm and up to 16% in the power of these solar cells were observed.
3

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne 14 May 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
4

Carbon-enhanced Photocatalysts for Visible Light Induced Detoxification and Disinfection

Gamage McEvoy, Joanne January 2014 (has links)
Photocatalysis is an advanced oxidation process for the purification and remediation of contaminated waters and wastewaters, and is advantageous over conventional treatment technologies due to its ability to degrade emerging and recalcitrant pollutants. In addition, photocatalytic disinfection is less chemical-intensive than other methods such as chlorination, and can inactivate even highly resistant microorganisms with good efficacy. Process sustainability and cost-effectiveness may be improved by utilizing solar irradiation as the source of necessary photons for photocatalyst excitation. However, solar-induced activity of the traditionally-used titania is poor due to its inefficient visible light absorption, and recombination of photo-excited species is problematic. Additionally, mass transfer limitations and difficulties separating the catalyst from the post-treatment slurry hinder conversions and efficiencies obtainable in practice. In this research, various strategies were explored to address these issues using novel visible light active photocatalysts. Two classes of carbon-enhanced photocatalytic materials were studied: activated carbon adsorbent photocatalyst composites, and carbon-doped TiO2. Adsorbent photocatalyst composites based on activated carbon and plasmonic silver/silver chloride structures were synthesized, characterized, and experimentally investigated for their photocatalytic activity towards the degradation of model organic pollutants (methyl orange dye, phenol) and the inactivation of a model microorganism (Escherichia coli K-12) under visible light. The adsorptive behaviour of the composites towards methyl orange dye was also studied and described according to appropriate models. Photocatalytic bacterial inactivation induced by the prepared composites was investigated, and the inactivation mechanisms and roles of incorporated antimicrobial silver on disinfection were probed and discussed. These composites were extended towards magnetic removal strategies for post-use separation through the incorporation of magnetic nanoparticles to prepare Ag/AgCl-magnetic activated carbon composites, and the effect of nanoparticles addition on the properties and photoactivities of the resulting materials was explored. Another silver/silver halide adsorbent photocatalyst composite based on activated carbon and Ag/AgBr exhibiting visible light absorption due to both localized surface plasmon resonance and optical band gap absorption was synthesized and its photocatalytic activity towards organics degradation and microbial inactivation was studied. Carbon-doped mixed-phase titania was also prepared and experimentally investigated.
5

Nanoplasmonics: properties and applications in photocatalysis, antimicrobials and surface-enhanced Raman spectroscopy

An, Xingda 30 September 2022 (has links)
Localized surface plasmon resonance (LSPR) describes the collective oscillation of conductive electrons in noble metal nanostructures, such as gold, silver and copper; or in selected doped semiconductor nanocrystals. Nanoplasmonics is emerging as a useful and versatile platform that combines the intense and highly tunable optical responses derived from LSPR with the intriguing materials properties at the nanoscale, including high specific surface areas, surface and chemical reactivity, binding affinity, and rigidity. LSPRs in plasmonic nanoparticles (NPs) can provide large optical cross-sections, and can lead to a wide variety of subsequent photophysical responses, such as localization of electric (E-)fields, production of plasmonic hot charge carriers, photothermal heating, etc. Plasmonic NPs can also be combined with other molecular or nanoscale systems into plasmonic heterostructures to further harvest the resonant E-field enhancement or to prolong the lifetime of plasmonic charge carriers. In this dissertation, we study the photophysical properties of plasmonic Ag and Au NPs, particularly E-field localization and hot charge carrier production performances; and illustrate how they can be optimized towards plasmonic photocatalysis, development of nano-antimicrobials, and surface-enhanced Raman spectroscopy (SERS) sensing. We demonstrate that with a lipid-coated noble metal nanoparticle (L-NP) model, the E-field localization properties could be optimized through positioning molecular photosensitizers or photocatalysts within a plasmonic “sweet spot”. This factor renders the plasmonic metal NPs efficient nanoantenna for resonant enhancement of the intramolecular transitions as well as the photocatalytic properties of the molecular photocatalysts. The enhanced photoreactivity have been applied to facilitate fuel cell half reactions for the enhancement of light energy conversion efficiencies; as well as to facilitate the release of broad-band bactericidal compounds that enables plasmonic nano-antimicrobials. Localized E-fields in L-NPs also enhance the inelastic scattering from molecules through SERS. This is utilized to obtain molecular-level information on the configuration of sterol-based, alkyne-containing Raman tags in hybrid lipid membranes, which enables spectroscopic sensing and targeted imaging of biomarker-overexpressing cancer cells at the single-cell level. In contrast to the localized E-field, plasmonic charge carrier generation mechanism relies on non-radiative decay pathways of the excited plasmons that lead to production of ballistic charge carriers. The plasmonic hot charge carriers directly participate in chemical redox processes with degrees of controllability over the nature of the charge carrier produced and direction of their transfers. The implementation and optimization of these mechanisms are explored, and the significances of some relevant applications are discussed.

Page generated in 0.0932 seconds