• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 14
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 1
  • Tagged with
  • 66
  • 66
  • 24
  • 16
  • 16
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and implementation of a hypoelastic constitutive theory to model the behavior of sand

Collins, Steve Alan 05 1900 (has links)
No description available.
12

INELASTIC BUCKLING OF GUSSET PLATES.

CHAKRABARTI, SEKHAR KUMAR. January 1987 (has links)
The strength and behavior of gusset plates in buckling is evaluated herein based on data from the experimental investigations conducted by other researchers and the analytical work presented herein. A set of design guidelines has been recommended through the review of the current practice. Representative single and double brace gusset plates normally adopted for connections with compressive bracing/diagonal members in braced frames and trusses, were modeled and analyzed using linear and nonlinear finite element methods to determine the buckling loads. The buckling analysis data along with the test data indicated the occurrence of inelastic buckling of the gusset plates. Current design practice and a set of formulas for determination of gusset plate thickness have been reviewed. A set of guidelines has been recommended for the design and evaluating gusset plate buckling loads.
13

Dilatancy effects on the constitutive modeling of granular soils

Salahuddin, Mohammed, 1959- January 1988 (has links)
Unique features of behavior of granular materials make constitutive modeling of these materials a challenge that has not yet been answered completely. Because volume changes are so important for the type of behavior exhibited by frictional materials, it is important to correctly incorporate them in constitutive models, both in terms of their rate of development and their magnitude. In this study a number of consolidated drained triaxial tests are performed to find those features of sand behavior that can be considered "material parameters" and can be used for constitutive modeling of granular soils. Special attention is given to those features of material behavior that are related to dilatancy. A number of published experimental data are also analyzed and useful trends of soil behavior are found.
14

NONASSOCIATIVE PLASTICITY MODEL FOR COHESIONLESS MATERIALS AND ITS IMPLEMENTATION IN SOIL-STRUCTURE INTERACTION.

HASHMI, QUAZI SARWAR EHSAN. January 1987 (has links)
A constitutive model based on rate-independent elastoplasticity concepts is developed and used to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths. The model accounts for various factors such as friction, stress path and stress history that influence the behavior of geologic materials. A hierarchical approach is adopted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associative model. Nonassociativeness is introduced as correction or perturbation to the basic model. Deviation of normality of the plastic strain increments to the yield surface F is captured through nonassociativeness. The plastic potential Q is obtained by applying a correction to F. This simplified approach restricts the number of extra parameters required to define the plastic potential Q. The material constants associated with the model are identified, and they are evaluated for three different sands (Leighton Buzzard, Munich and McCormick Ranch). The model is then verified by comparing predictions with laboratory tests from which the constants were found, and typical tests not used for finding the constants. The effect of varying initial density of a material on the stress-strain and volumetric response is investigated. An empirical relation is proposed, whereby one parameter is modified based on the initial density, such that improved predictions can be obtained without increasing the total number of parameters. Implementation of the nonassociative model in a finite element program to solve boundary value problems leads to a nonsymmetric stiffness matrix. Besides, using a nonsymmetric solver, three numerical schemes are investigated. The idea of the schemes is to modify the stiffness matrix such that a symmetric equation solver can be used. Prediction of stress-strain, volumetric response and CPU time for different schemes are compared with the predictions obtained using the nonsymmetric solver. The nonsymmetric equation solver used less CPU time and the solutions were more accurate. Based on the above findings, a soil-footing system is analyzed using the finite element techniques. The associative and nonassociative models are used to predict the behavior. For the nonassociative model, solution is obtained by using a nonsymmetric solver. Results obtained from both models are compared with a model footing test performed in the laboratory.
15

NONLINEAR ANALYSIS OF POROUS SOIL MEDIA AND APPLICATION (PORE PRESSURE, TIME INTEGRATION, FINITE ELEMENTS).

GALAGODA, HERATH MAHINDA. January 1986 (has links)
The behavior of porous media subjected to any arbitrary loading is a complex phenomenon due to the coupled nature of the problem. Proper understanding of this coupled behavior is essential in dealing with many of the geotechnical engineering problems. A very general three-dimensional formulation of such a coupled problem was first reported by Biot; however, a two-dimensional idealization of the theory is used here with extension to nonlinear material behavior. A finite element computer code is developed to analyze the response of coupled systems subjected to both static and dynamic excitations. The code can also be used to solve problems involving only solid media by suppressing the presence of fluid. The generalized anisotropic hardening model is implemented into the finite element procedure to characterize nonlinear material behavior throughout the realm of its deformation process. Both drained and undrained conditions are considered in order to verify the performance of the model in capturing material behavior. Three different materials are considered for this purpose. The predictions obtained using the anisotropic model for both drained and undrained condition yield satisfactory comparison with observed behavior. The finite element procedure is verified by solving several problems involving undrained, consolidation and dynamic responses of coupled system. Good agreements are found between numerical and analytical results. Further verification of the computer code and the material model is performed by solving two boundary value problems. For this purpose, a laboratory pressuremeter test subjected to quasi-static loading condition and a building foundation system subjected to rapid earthquake excitation were analyzed. The results of this research have provided an improved understanding of coupled behavior of porous media. The procedure developed here can be effectively used under a wide range of loading conditions varying from very slow quasi-static to very rapid earthquake excitations.
16

THREE-DIMENSIONAL NONLINEAR SOIL-STRUCTURE INTERACTION ANALYSIS OF PILE GROUPS AND ANCHORS.

MUQTADIR, ABDUL. January 1984 (has links)
Analysis and design of structures supported by geological media pose various complexities such as nonlinear behavior of supporting media, nature of loading, irregularities in geometry and boundary condition, and the interaction effects. It is extremely difficult to find closed-form solutions for such problems. So often, numerical techniques such as finite difference, finite element and boundary integral methods are used. In this research two soil-structure interaction problems are analyzed using the finite element method involving fully three-dimensional idealizations. In order to incorporate nonlinear behavior of a soil, a nonlinear elastic (hyperbolic model), and generalized single surface plasticity model including hardening are implemented in the finite element program for analysis of a pile group foundation, and an anchor in sands, respectively. The parameters required to define these models are determined from comprehensive laboratory stress-strain data obtained by using a multiaxial testing device. Typical stress paths are back predicted using the generalized plasticity model to verify that it is capable of predicting those paths, and is found to be satisfactory. In order to include the interaction effects resulting in relative slip and debonding or crack and openings at the junction between two dissimilar materials, the thin-layer element model is implemented. Load deformation behavior, force and stress distributions in various components of pile group foundation, and the anchor-soil system are predicted by using the numerical procedure. The predictions are compared with results from a model test for the pile group and field observations for the anchor problem; the comparisons are found to be satisfactory. The effects of soil nonlinearity and interface behavior are also delineated and it is found that their inclusion, particularly in case of anchors analysis, can substantially effect the behavior of the system. Detailed analysis of the results permits an increased understanding of the stress deformation mechanisms of the three-dimensional problems.
17

Plastic deformation of silver micro-wires under uniaxial tension

Chen, Xiaoxiao, 陈晓晓 January 2011 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
18

Theoretical modelling and numerical simulation of plastic deformation of nanostructured materials with high strength and ductility

Li, Jianjun, 李建军 January 2013 (has links)
Nanostructured materials have attracted intensive scientific interests during the past two decades due to their outstanding physical and mechanical properties. However, the brittleness of nanostructured materials posed a great challenge for their engineering applications. Recently, several strategies were successfully adopted to produce nanostructured materials with both high strength and ductility such as surface-nanocrystallized (SNC) materials, nanocrystalline materials with stress-induced nanograin growth and nanotwinned metals. A lot of molecular dynamics (MD) simulations, modelling and experiments have been conducted to investigate the deformation mechanisms and the correlated exceptional mechanical properties and considerable progress has been made. However, some problems remain unsolved. For example, the complicated structure of SNC materials due to its grain size gradient (GSG) surface layer makes it difficult to establish a quantitative model for prediction of their strength and ductility; the main mode of nanograin growth in nanostructured materials, i.e., shear-coupled migration of grain boundaries (GBs), was experimentally observed as contributing to their enhanced ductility, but the mechanism of the enhancement remains unclear. In addition, there exist contradictory results for the grain size dependence of transitional twin thickness that corresponds to the maximum strength of nanotwinned metals. All these issues should be addressed to gain a better understanding of the mechanism-ductility correlation in order to provide some guidelines for designing lighter, stronger and ductile nanostructured materials. Therefore, an attempt was made to study the plastic deformation of nanostructured materials with high strength and ductility by theoretical modelling and numerical simulations. Firstly, the enhanced balance of strength and ductility of SNC materials was studied using a combination of theoretical analysis and finite element simulation. A criterion was established for determining the ductility of SNC materials. The results obtained showed that the ductility of a SNC sample could be comparable to that of its coarse-grained counterpart, while it simultaneously possessed a much higher strength than that of the latter if optimal GSG thickness and topmost phase grain size were adopted. Then a dislocation-density-based model was proposed to quantitatively predict the plastic deformation of SNC materials; the stress-driven nanograin growth was also incorporated in the said model. The capability of the model in predicting the strength and work hardening of SNC materials was validated by the existing experimental results. Thirdly, physical models for shear-coupled migration of GBs in nanostructured materials were developed to explain the general coupling between the shear and the normal migration of GBs observed in MD simulations and experiments. The coupled migration process was found to be a general and effective toughening mechanism in nanostructured materials. Moreover, our study showed that the shear-coupled migration is able to enhance the intrinsic ductility considerably when it cooperates with GB sliding. Finally, an elastic-viscoplastic constitutive model based on the competition of intra-twin and twin-boundary-mediated deformation mechanisms was proposed to predict the grain size dependent transitional twin thickness of nanotwinned metals. A linear relation between the transitional twin thickness and the grain size was predicted, which was in excellent agreement with the results obtained from MD simulations and experiments available in the literatures. / published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
19

State variable analysis of flow localization in work hardening materials

Christodoulou, Nicholas C. January 1982 (has links)
Large strain tensile tests were carried out on OFHC Cu and 99.99% Al with the aim of determining the first and second order work hardening and rate sensitivity coefficients. The tests were performed at room temperature and 473 K and at constant true strain rates in the range 5 x 10('-4) to 10('-1) s('-1). With the aid of a diameter transducer, which was set up to measure and control the rate of reduction of the diameter of the tensile specimen, the strain rate at the minimum cross-section was held constant well beyond the point of maximum load. A second diametral sensor was constructed for use at elevated temperatures. In order to extend the range of conditions covered, constant strain rate compression tests were also performed on Cu at 698 K. In a further series of experiments, tensile tests were carried out on Cu and Al samples at 293 and on Al specimens at 473 K in which the flow localization process was followed by photographic means. / It was observed that the values of the rate sensitivity of the work hardening rate B(,(sigma)) beyond the maximum load are not negligible, but that they are less than 1, in opposition to the theoretical predictions of Kocks et al('(47)). Furthermore, it is shown that, contrary to the suggestion of these workers, the rate sensitivity at constant work hardening rate N is not the material coefficient that controls the growth of strain rate gradients at large strains. / The material coefficients determined using the diametral transducer were employed for the numerical integration of the second order differential equation describing flow localization proposed by Kocks et al('(47)). This equation was integrated at the minimum cross-section of the sample, and the solution is compared with the one calculated by integrating the first order differential equation proposed earlier by Jonas et al('(10)). As expected, the strain measurements obtained from the flow localization experiments are reproduced more closely by the second order solution than by the first order one largely because of the non-negligible values of B(,(sigma)). However, at large deformations, there is a discrepancy between the experimental observations and the predictions of the second order theory. This is attributed to the development of triaxial stresses at these strains. A possible modification of the second order treatment is suggested, based on the gradient in the Bridgman correction term.
20

Evolution of crystallographic textures and TRIP effects in stainless steel AISI 304

Buzit, Sebastien 05 1900 (has links)
No description available.

Page generated in 0.0632 seconds