Spelling suggestions: "subject:"1plastic shrinkage crace’s"" "subject:"1plastic shrinkage cracens""
1 |
An investigation into the use of low volume - fibre reinforced concrete for controlling plastic shrinkage crackingMaritz, Jaco-Louis 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Plastic shrinkage cracking (PSC) in concrete is a well-known problem and usually occurs within the first few hours after the concrete has been cast. It is caused by a rapid loss of water from the concrete, either from the surface through evaporation or through absorption by dry subgrade or formwork in contact with the concrete and results in an overall reduction in concrete volume. If this volume reduction or shrinkage is restrained, plastic shrinkage cracks can occur.
Plastic shrinkage cracks create an unsightly appearance on the concrete surface which reduces the quality of the concrete structure. These cracks also develop weak points in the concrete which can be widened and deepened later on by drying shrinkage and thermal movement. As a result harmful substances may enter the cracks causing accelerated concrete deterioration. These cracks may also expose the steel reinforcement causing it to corrode more aggressively. Consequently, the aesthetic value, serviceability, durability and overall performance of the concrete will be reduced. Therefore it is important to consider methods of limiting PSC.
One of these methods is the addition of low volumes of polymeric fibres to concrete to reduce PSC. However, the application of this low volume fibre reinforced concrete (LV-FRC) is not clearly understood since there is a lack of knowledge and guidance available for the use of LV-FRC.
The objective of this study is to gain a full understanding of PSC behaviour in conventional concrete and LV-FRC by investigating the effects of evaporation and bleeding as well as the effect of various fibre properties on PSC. The following significant findings were attained: A basis for a crack prediction model in conventional concrete was developed using the average differences in cumulative evaporation and cumulative bleeding to create a crack prediction value (CPV). This preliminary model showed that there exists a certain CPV range (-0.2 to 0.4 kg/m2 for this study) where a slight decrease in the CPV results in a significant PSC reduction. It also showed that if the CPV falls outside this range, varying the bleeding or evaporation conditions will have very little effect on the PSC. A study on the fibre properties in LV-FRC showed that there exist certain limits to the fibre volume, length and diameter where a further increase or decrease in value will have no or little effect on reducing PSC. It also showed that the effect of the fibres depend on the level of severity of PSC.
The knowledge gained from this investigation can serve as a basis for the design of a model that can predict the risk of PSC in conventional concrete and specify preventative measures needed to reduce this risk. It also provides information that can be used to develop guidelines for the effective use of LV-FRC. / AFRIKAANSE OPSOMMING: Plastiese krimp krake (PKK) in beton is `n bekende probleem en vorm gewoonlik binne die eerste paar uur nadat die beton gegiet is. Dit word veroorsaak deur die vinnige waterverlies vanuit die beton, óf deur verdamping vanaf die beton oppervalk óf deur absorpsie van `n droeë grondlaag of bekisting wat in kontak is met die beton. Dit veroorsaak `n algehele vermindering in beton volume. As hierdie krimping van die beton beperk word, kan plastiese krimp krake ontstaan.
PKK skep 'n onooglike voorkoms van die beton oppervlakte en verlaag die kwaliteit van die beton struktuur. Hierdie krake tree ook op as swak plekke in die beton wat later kan verbreed of verdiep deur droogkrimping en termiese beweging. Gevolglik kan skadelike stowwe vanuit die omgewing die krake binnedring wat lei tot versnelde agteruitgang van die beton. Hierdie krake kan ook die staalbewapening ontbloot wat veroorsaak dat dit vinniger roes. Gevolglik verminder die estetiese waarde, diensbaarheid, duursaamheid en algehele prestasie van die beton. Daarom is dit belangrik om metodes te ondersoek vir die beperking van PKK.
Een van hierdie metodes is die byvoeging van lae volumes polimeer vesels tot beton om PKK te verminder. Die toepassing van hierdie lae volume - vesel versterkte beton (LV-VVB) word egter nog nie volledig verstaan nie as gevolg van 'n algemene gebrek aan kennis en riglyne vir die gebruik van die LV-VVB.
Die doel van hierdie studie is om 'n volledige begrip van PKK gedrag in normale beton asook LV-VVB te kry. Dit word behaal deur die effek van verdamping en bloei op PKK sowel as die effek van verskillende vesel eienskappe op PKK te ondersoek. Die volgende noemenswaardige bevindinge is bekry.
• Die basis van 'n kraak voorspellingsmodel vir gewone beton is ontwikkel deur gebruik te maak van die gemiddelde verskil tussen die kumulatiewe verdamping en die kumulatiewe bloei om 'n kraak voorspellingswaarde (KVW) te vorm. Hierdie voorlopige model toon dat daar `n sekere KVW interval ontstaan (-0,2 tot 0,4 kg/m2 vir hierdie studie) waar slegs 'n effense vermindering in die KVW 'n geweldige vermindering in die PKK tot gevolg het. Dit dui ook aan dat, indien die KVW buite hierdie interval val, ʼn verandering in die bloei of verdamping toestande `n baie klein invloed op die PKK het. 'n Studie oor die vesel eienskappe in LV-VVB het gewys dat daar sekere grense is aan die vesel volume, lengte en deursnee waardes, waar 'n verdere toename of afname in waarde min of geen effek het op die vermindering van PKK nie. Dit wys ook dat die effek van die vesels grotendeels afhanklik is van die risiko vlak vir PKK.
Die kennis wat uit hierdie ondersoek opgedoen is, kan dien as 'n basis vir die ontwerp van 'n model wat die risiko van PKK in gewone beton kan voorspel en daarvolgens besluit op 'n voorkomingsmaatsreël om hierdie risiko te verminder. Dit bied ook inligting wat gebruik kan word om riglyne te ontwikkel vir die effektiewe gebruik van LV-VVB.
|
Page generated in 0.0811 seconds