• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Debonding failure of fiber reinforced polymers

Sharma, Bhavna January 2006 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2006. / Includes bibliographical references (leaves 94-97). / xi, 97 leaves, bound ill. (some col.) 29 cm
2

Fracture Toughness Testing of Plastics under Various Environmental Conditions

Velpuri, Seshagirirao V. 12 1900 (has links)
The primary objective of this study is to test the applicability to plastics of a fracture toughness testing tool developed for metals. The intent is to study pre-test conditioning of several plastic materials and the effect of the depth of the razor notch cut in the chevron notched fracture toughness test specimens. The study includes the careful preparation of samples followed by conditioning in various environments. Samples were subjected to laboratory air for a specific duration or to a controlled temperature-humidity condition as per the ASTM D1870. Some of the samples were subjected to vacuum conditioning under standard test specifications. Testing was conducted using the conventional three-point bend test as per ASTM D5045-95. ASTM E1304, which sets a standard for short rod and bar testing of metals and ceramics provides some basis for conducting chevron notched four-point bend tests to duplicate the toughness tool. Correlation of these results with the ASTM test samples is determined. The four-point bend test involves less specimen machining as well as time to perform the fracture toughness tests. This study of fracture toughness testing has potential for quality control as well as the fracture property determination.
3

An experimental stress analysis approach for pure shear testing and analysis of a fiber reinforced plastic composite

Javidinejad, Amir 05 1900 (has links)
No description available.
4

Fatigue and fracture of foam cores used in sandwich composites

Unknown Date (has links)
This study focused on the fracture and fatigue crack growth behavior in polyvinylchloride (PVC) and polyethersulfone (PES) foams. A new sandwich double cantilever beam (DCB) test specimen was implemented. Elastic foundation and finite element analysis and experimental testing confirmed that the DCB specimen is appropriate for static and cyclic crack propagation testing of soft polymer foams. A comprehensive experimental mechanical analysis was conducted on PVC foams of densities ranging from 45 to 100 kg/m3 and PES foams of densities ranging from 60 to 130 kg/m3. An in-situ scanning electron microscope study on miniature foam fracture specimens showed that crack propagation in the PVC foam was inter-cellular and in the PES foam, failure occurred predominately by extensional failure of vertical cell edges. Sandwich DCB specimens were loaded cyclically as well. For the PVC foams, the crack growth rates were substantially influenced by the density. For the PES foams, there was no clear indication about the influence of foam density on the crack growth rate. / by Elio Saenz. / Thesis (M.S.C.S.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
5

The structural integrity of nanoclay filled epoxy polymer under cyclic loading

Chetty, Sathievelli January 2017 (has links)
Submitted in fulfillment of the requirements of the Degree of M.Tech.: Mechanical Engineering, Durban University of Technology, 2017. / Fatigue crack initiation and propagation behaviour of CFRP have been of great importance because such composites are often used in engineering components that are subjected to continuous cyclic loading. The objective of this thesis work was to investigate the damage characteristics of the fatigue properties of CFRP composites by the modification of the polymer matrix with nanoclay addition. Carbon fibre reinforced epoxy was produced via vacuum assisted resin infusion moulding method (VARIM) with nanoclay concentrations of 0wt%, 1wt%, 3wt% and 5wt%. Tension-tension fatigue tests were conducted at loading levels of 90%, 75% and 60%. The frequency that was used was 3Hz with R value of 0.1. The results showed that at nanoclay percentages of 0wt%, 1wt% and 3wt% there was a consistent trend, where the number of cycles increased in fatigue loading percentages of 90%, 75% and 60%. At 5wt% nanoclay percentage the number of fatigue cycles dropped significantly at the 90% fatigue loading. The brittle nature of the 5wt% laminate became dominate and the sample fractured early at low fatigue cycle numbers. At the 75% fatigue loading, the number of cycles increased and at 60% fatigue loading the 5wt% nanoclay sample exceeded the number of cycles of all the nanoclay percentages by 194%. This was due to the intercalated arrangement of the nanoclays favouring the slow rate of surface temperature increase, during fatigue testing, at low fatigue cycle loading. The Crack Density analysis was performed and showed that at the same time in the fatigue cycle life, the 1wt% had 55 cracks, 3wt% had 52 cracks and the 5wt% had 50 cracks, for the 60% fatigue loading. This proved that it took longer for the cracks to initiate and propagate through the sample as the nanoclay percentage increased. Impact and hardness testing showed that the 5wt% exhibited brittle behaviour, which contributed to the results above. Scanning electron microscopy examination highlighted that the agglomeration of nanoclays delayed the crack initiation and propagation through the specimen and that the extent of fatigue damage decreased as the nanoclay percentage increased. A fatigue failure matrix was developed and showed that delamination, fibre breakage and matrix failure were the predominate causes for the fatigue failure. / M

Page generated in 0.073 seconds