• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • Tagged with
  • 12
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae)

Naumann, Julia, Der, Joshua P., Wafula, Eric K., Jones, Samuel S., Wagner, Sarah T., Honaas, Loren A., Ralph, Paula E., Bolin, Jay F., Maass, Erika, Neinhuis, Christoph, Wanke, Stefan, dePamphilis, Claude W. 08 June 2016 (has links)
Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs and a few non-bioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only ~1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole genome shotgun read depth is 1,400X coverage for the plastome, while the mitochondrial genome is covered at 40X and the nuclear genome at 2X. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally-active open reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in Hydnora visseri. A four stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.
12

Využití metody Hyb-Seq pro rekonstrukci retikulátní vnitrorodové fylogeneze: příklad z polyploidního rodu Curcuma L. (Zingiberaceae) / Application of Hyb-Seq method for reconstruction of reticulate infrageneric phylogeny: example from polyploid genus Curcuma L. (Zingiberaceae)

Skopalíková, Jana January 2017 (has links)
This master thesis focuses on the phylogeny of hybridogenous and polyploid genus Curcuma from family Zingiberaceae using Next-Generation Sequencing data from hundreds to thousands nuclear loci. This approach seems to be better than widely used cpDNA and ITS sequencing especially in the case of hybridogenous and polyploid groups. Data for phylogeny reconstruction were generated using Hybridization-based sequencing (Hyb-Seq) method which combines target enrichment and genome skimming strategies. Data analysis was performed primarily using pipeline HybPhyloMaker especially created for Hyb-Seq data analysis. Twenty-seven species from the genus Curcuma and three outgroup species were sequenced in this work. Phylogenetic trees based on all 1 154 and 811 selected nuclear low- copy genes show high support values of all nodes which is in contrast to plastome and rDNA phylogeny with lower support values in some nodes and incongruences in topology compared to low-copy genes phylogeny. Phylogenetic networks inferred from low-copy genes, lineage movement analysis and monophyly tests agree with published hypotheses of interlineage hybrid origin of three species - C. vamana, C. myanmarensis and C. roscoeana. These analyzes show likely hybrid origin of C. candida too with parents from the group Curcuma I and basal...

Page generated in 0.062 seconds