• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and development of compounds for nonlinear absorption of light

Kindahl, Tomas January 2012 (has links)
High-intensity light — for instance that from a laser — can be destructive, not only to the human eye, but also to equipment such as imaging sensors and optical communication devices. Therefore, effective protection against such light is desirable. A protection device should ideally have high transmission to non-damaging light, and should also be fast-acting in order to effectively stop high-intensity light. In working towards a protection device, there is a need to conduct fundamental research in order to understand the processes involved. One of the photophysical processes of special interest in the field of optical power limiting (OPL) is reverse saturable absorption, where a compound in an excited state absorbs light more strongly than it does in its ground state. In this work, several novel organoplatinum compounds for OPL, rationally designed to have a strong reverse saturable absorption, have been synthesized. The compounds have been analyzed using linear and nonlinear absorption spectroscopy, luminescence spectroscopy, and quantum chemistry calculations to gain further knowledge regarding their photophysical properties. In addition to this fundamental research, the absorption capabilities of some of these compounds indicate that they can be used for OPL applications. Consequently, compounds from these studies have been incorporated into a sol–gel glass that could be used in optical systems. / <p>Finansiellt stöd från Kempestiftelsen.</p>

Page generated in 0.0507 seconds