• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoria do funcional da densidade aplicada ao estudo da interação entre oxigênio molecular e nanoclusters de platina dopados com Al, Cr e V / Density functional theory applied to the study of the interaction between molecular oxygen and platinum nanoclusters doped with Al, Cr and V

Varela Junior, Jaldyr de Jesus Gomes 27 July 2011 (has links)
Este trabalho apresenta um estudo aplicando a Teoria do Funcional da Densidade (DFT), utilizando o funcional B3LYP, para estudar a estrutura eletrônica de nanoclusters de platina dopados com Al, Cr e V e suas interações com oxigênio molecular. As análises das populações de Mulliken e de NBO para a interação entre O2 e Pt2, Pt-Cr e Pt-V revelaram que ocorre transferência de carga dos orbitais s e d dos metais para os orbitais p do oxigênio, resultando no preenchimento dos orbitais antiligantes da molécula de oxigênio, provocando a quebra da ligação O--O e formação de ligações hibridizadas Metal - O, com energia de dissociação da ligação O - O em 1,0 eV sobre Pt2. Sobre Pt-Cr e Pt-V, esse valor decresce para 0,56 eV e 0,20 eV, respectivamente. Os estudos da interação entre oxigênio molecular e os clusters Pt3, Pt2Al, Pt2Cr e Pt2V mostram que ocorre adsorção não dissociativa de oxigênio molecular sobre o cluster Pt3 onde observamos uma adsorção segundo o modelo de ponte enquanto que sobre os clusters Pt2Al e Pt2V ocorre adsorção dissociativa de oxigênio molecular. Por outro lado, com o cluster Pt2Cr a adsorção segue o modelo de Pauling, com o oxigênio molecular adsorvido em apenas um sítio do cluster, que foi o átomo Pt, sem a quebra da ligação O--O. Curvas de superfície de energia potencial para a dissociação de oxigênio molecular sobre Pt2Al e Pt2V mostraram um valor de aproximadamente 0,21 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt2Al e aproximadamente 0,30 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt2V. Os estudos da interação entre oxigênio molecular e os clusters Pt4, Pt3Al, Pt3Cr e Pt3V mostram que ocorre adsorção não dissociativa de oxigênio molecular sobre os clusters Pt4 e Pt3Cr onde foi observado que a adsorção segue o modelo de ponte. Por outro lado, sobre os clusters Pt3Al e Pt3V a adsorção de oxigênio molecular também seguiu o modelo ponte, com dissociação da ligação O - O. Encontramos um valor de 0,46 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt3Al e aproximadamente 0,28 eV para a barreira energética de dissociação da ligação O--O adsorvido sobre o cluster Pt3V. Os estudos para interação entre oxigênio molecular e os clusters Pt5, Pt4Al, Pt4Cr e Pt4V revelaram que ocorre adsorção dissociativa de oxigênio molecular sobre os clusters Pt4Al e Pt4V, onde observamos uma adsorção que segue o modelo de ponte enquanto que sobre o cluster Pt5 a adsorção segue o modelo de ponte sem dissociação da ligação O--O. Por outro lado, a adsorção sobre Pt4Cr segue o modelo de Pauling, com o oxigênio molecular adsorvido em apenas um sítio do cluster, sem a quebra da ligação O--O. Curvas de superfície de energia potencial mostraram um valor de aproximadamente 0,62 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt4Al e aproximadamente 0,20 eV para a barreira energética de dissociação da ligação O--O adsorvido sobre o cluster Pt4V. / This work presents a study applying the Density Functional Theory (DFT) using the B3LYP functional to study the electronic structure of platinum nanoclusters doped with Al, Cr and V and their interactions with molecular oxygen. The analysis of Mulliken populations and NBO for the interaction between O2 and Pt2, Pt-Cr and Pt-V showed that charge transfer occurs orbital sed metals for the p orbitals of oxygen, resulting in the filling of the antibonding orbitals of the molecule oxygen, causing the cleavage of O-O and bond forming hybridized Metal - O, bond dissociation energy of O - O on Pt2 about 1.0 eV. On Pt-Cr and Pt-V, this value decreases to 0.56 eV and 0.20 eV, respectively. Studies of the interaction between molecular oxygen and the Pt3 clusters, Pt2Al, Pt2Cr and Pt2V show that no dissociative adsorption occurs for molecular oxygen on the cluster Pt3 where we observe a second adsorption model bridge while on clusters Pt2Al and Pt2V dissociative adsorption occurs of molecular oxygen. Moreover, with the cluster Pt2Cr adsorption follows the model of Pauling, with molecular oxygen adsorbed on only one site in the cluster, which was the Pt atom, without the cleavage of the O-O. Curves of potential energy surface for dissociation of molecular oxygen on Pt2Al and Pt2V showed a value of about 0.21 eV for the bond dissociation barrier of the O-O adsorbed on the cluster Pt2Al approximately 0.30 eV and for the barrier The bond dissociation O-O adsorbed on the cluster Pt2V. Studies of the interaction between molecular oxygen and clusters Pt4, Pt3Al, Pt3Cr and Pt3V show that no dissociative adsorption occurs for molecular oxygen on clusters Pt4 and Pt3Cr where it was observed that the adsorption follows the model of the bridge. On the other hand, on clusters Pt3Al and Pt3V adsorption of molecular oxygen also followed the model bridge, with bond dissociation O - O. We found a value of 0.46 eV for the barrier to bond dissociation to O-O adsorbed on the cluster Pt3Al and approximately 0.28 eV for bond dissociation of the O-O adsorbed on the cluster Pt3V. Studies on the interaction between molecular oxygen and clusters Pt5, Pt4Al, Pt4Cr and Pt4V revealed that occurs dissociative adsorption of molecular oxygen on clusters Pt4Al and Pt4V, where we observe an adsorption model that follows the bridge while on the adsorption cluster Pt5 follows the bridge model without the bond dissociation. Moreover, adsorption is modeled on Pt4Cr Pauling with oxygen adsorbed on only one site of the cluster, without the cleavage of the O-O. Curves of potential energy surface showed a value of about 0.62 eV for the bond dissociation barrier of the O-O adsorbed on the cluster Pt4Al and approximately 0.20 eV energy barrier for bond dissociation of the O-O adsorbed on the Pt­4V cluster.
2

Teoria do funcional da densidade aplicada ao estudo da interação entre oxigênio molecular e nanoclusters de platina dopados com Al, Cr e V / Density functional theory applied to the study of the interaction between molecular oxygen and platinum nanoclusters doped with Al, Cr and V

Jaldyr de Jesus Gomes Varela Junior 27 July 2011 (has links)
Este trabalho apresenta um estudo aplicando a Teoria do Funcional da Densidade (DFT), utilizando o funcional B3LYP, para estudar a estrutura eletrônica de nanoclusters de platina dopados com Al, Cr e V e suas interações com oxigênio molecular. As análises das populações de Mulliken e de NBO para a interação entre O2 e Pt2, Pt-Cr e Pt-V revelaram que ocorre transferência de carga dos orbitais s e d dos metais para os orbitais p do oxigênio, resultando no preenchimento dos orbitais antiligantes da molécula de oxigênio, provocando a quebra da ligação O--O e formação de ligações hibridizadas Metal - O, com energia de dissociação da ligação O - O em 1,0 eV sobre Pt2. Sobre Pt-Cr e Pt-V, esse valor decresce para 0,56 eV e 0,20 eV, respectivamente. Os estudos da interação entre oxigênio molecular e os clusters Pt3, Pt2Al, Pt2Cr e Pt2V mostram que ocorre adsorção não dissociativa de oxigênio molecular sobre o cluster Pt3 onde observamos uma adsorção segundo o modelo de ponte enquanto que sobre os clusters Pt2Al e Pt2V ocorre adsorção dissociativa de oxigênio molecular. Por outro lado, com o cluster Pt2Cr a adsorção segue o modelo de Pauling, com o oxigênio molecular adsorvido em apenas um sítio do cluster, que foi o átomo Pt, sem a quebra da ligação O--O. Curvas de superfície de energia potencial para a dissociação de oxigênio molecular sobre Pt2Al e Pt2V mostraram um valor de aproximadamente 0,21 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt2Al e aproximadamente 0,30 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt2V. Os estudos da interação entre oxigênio molecular e os clusters Pt4, Pt3Al, Pt3Cr e Pt3V mostram que ocorre adsorção não dissociativa de oxigênio molecular sobre os clusters Pt4 e Pt3Cr onde foi observado que a adsorção segue o modelo de ponte. Por outro lado, sobre os clusters Pt3Al e Pt3V a adsorção de oxigênio molecular também seguiu o modelo ponte, com dissociação da ligação O - O. Encontramos um valor de 0,46 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt3Al e aproximadamente 0,28 eV para a barreira energética de dissociação da ligação O--O adsorvido sobre o cluster Pt3V. Os estudos para interação entre oxigênio molecular e os clusters Pt5, Pt4Al, Pt4Cr e Pt4V revelaram que ocorre adsorção dissociativa de oxigênio molecular sobre os clusters Pt4Al e Pt4V, onde observamos uma adsorção que segue o modelo de ponte enquanto que sobre o cluster Pt5 a adsorção segue o modelo de ponte sem dissociação da ligação O--O. Por outro lado, a adsorção sobre Pt4Cr segue o modelo de Pauling, com o oxigênio molecular adsorvido em apenas um sítio do cluster, sem a quebra da ligação O--O. Curvas de superfície de energia potencial mostraram um valor de aproximadamente 0,62 eV para a barreira de dissociação da ligação O--O adsorvido sobre o cluster Pt4Al e aproximadamente 0,20 eV para a barreira energética de dissociação da ligação O--O adsorvido sobre o cluster Pt4V. / This work presents a study applying the Density Functional Theory (DFT) using the B3LYP functional to study the electronic structure of platinum nanoclusters doped with Al, Cr and V and their interactions with molecular oxygen. The analysis of Mulliken populations and NBO for the interaction between O2 and Pt2, Pt-Cr and Pt-V showed that charge transfer occurs orbital sed metals for the p orbitals of oxygen, resulting in the filling of the antibonding orbitals of the molecule oxygen, causing the cleavage of O-O and bond forming hybridized Metal - O, bond dissociation energy of O - O on Pt2 about 1.0 eV. On Pt-Cr and Pt-V, this value decreases to 0.56 eV and 0.20 eV, respectively. Studies of the interaction between molecular oxygen and the Pt3 clusters, Pt2Al, Pt2Cr and Pt2V show that no dissociative adsorption occurs for molecular oxygen on the cluster Pt3 where we observe a second adsorption model bridge while on clusters Pt2Al and Pt2V dissociative adsorption occurs of molecular oxygen. Moreover, with the cluster Pt2Cr adsorption follows the model of Pauling, with molecular oxygen adsorbed on only one site in the cluster, which was the Pt atom, without the cleavage of the O-O. Curves of potential energy surface for dissociation of molecular oxygen on Pt2Al and Pt2V showed a value of about 0.21 eV for the bond dissociation barrier of the O-O adsorbed on the cluster Pt2Al approximately 0.30 eV and for the barrier The bond dissociation O-O adsorbed on the cluster Pt2V. Studies of the interaction between molecular oxygen and clusters Pt4, Pt3Al, Pt3Cr and Pt3V show that no dissociative adsorption occurs for molecular oxygen on clusters Pt4 and Pt3Cr where it was observed that the adsorption follows the model of the bridge. On the other hand, on clusters Pt3Al and Pt3V adsorption of molecular oxygen also followed the model bridge, with bond dissociation O - O. We found a value of 0.46 eV for the barrier to bond dissociation to O-O adsorbed on the cluster Pt3Al and approximately 0.28 eV for bond dissociation of the O-O adsorbed on the cluster Pt3V. Studies on the interaction between molecular oxygen and clusters Pt5, Pt4Al, Pt4Cr and Pt4V revealed that occurs dissociative adsorption of molecular oxygen on clusters Pt4Al and Pt4V, where we observe an adsorption model that follows the bridge while on the adsorption cluster Pt5 follows the bridge model without the bond dissociation. Moreover, adsorption is modeled on Pt4Cr Pauling with oxygen adsorbed on only one site of the cluster, without the cleavage of the O-O. Curves of potential energy surface showed a value of about 0.62 eV for the bond dissociation barrier of the O-O adsorbed on the cluster Pt4Al and approximately 0.20 eV energy barrier for bond dissociation of the O-O adsorbed on the Pt­4V cluster.

Page generated in 0.0951 seconds