Spelling suggestions: "subject:"beplatinum electrodes"" "subject:"cisplatinum electrodes""
1 |
Electrochemical oxidation of methanol on platinum and platinum based electrodesMorimoto, Yu January 1995 (has links)
No description available.
|
2 |
A Characterization of Caffeine Imprinted Polypyrrole ElectrodeMandadi, Deepika 01 December 2009 (has links)
Nanotechnology holds great potential for improving our lives by creating many new materials and devices in medical sciences, electronics and also in energy production. Molecularly imprinted polymers (MIPs) are highly stable synthetic polymers that possess molecular recognition properties due to cavities created in the polymer matrix that are complementary to an analyte both in shape and in positioning of functional groups. These MIPs have been widely employed for diverse applications (e.g., in chromatographic separation, drug screening, chemosensors, catalysis, immunoassays etc) due to their specificity towards the target molecules and high stability against physicochemical perturbations. Conductive polymers, (CPs) such as polypyrrole, can be likened to semiconductors because of small band gaps and low electronic mobility. CPs are exploited as an excellent tool for the preparation of nanocomposites with nano scaled biomolecules. Polypyrrole (Ppy) was the first of this key family of compounds to show high conductivity. So, electrically conducting polypyrrole (Ppy) has numerous applications.
In this study, caffeine imprinted electrodes (CIE) were prepared and characterized. This research project mainly focused on three important aspects: &#;To determine the thickness of the polymeric film. &#;To determine the Limit of detection (LOD) of the polymeric film at different conditions. &#;To determine the Analytical Sensitivity (γ) of the polymeric film at varied conditions.
In summary these are conclusions stated: •The thickness of the electrode increased with an increase in the number of pulses. The film thickness increased linearly up to an application of 30 pulses and after 30 pulses, an increase in slope occurred with again a linear correlation up to the maximum applied number of pulses, 42. This change in slope may indicate a different mechanism taking place.
•LOD is improved as the caffeine load is reduced from 10.0 to 3.0 mM and as the number of pulses is reduced from 36 to 24.
•γ increases the number of pulses increase from 24 to 36 and also increases as the caffeine load increases.
|
3 |
Electrode processesAixill, W. Joanne January 1998 (has links)
The work presented in this thesis first characterises a high speed channel flow cell and then applies the system to the electro-reduction of nitromethane in aqueous solution. Potential step transient measurements are carried out with the current-time transients simulated using a model based on the absence of axial diffusion. The excellent agreement between theory and experiment confirms the proposed mass transport model and further demonstrates that the combination of current-time transients recorded using the high speed channel flow cell and numerical simulations provide a powerful tool to access homogeneous rate constants of the order 1 x 10<sup>6</sup>s̄¹. The high speed channel flow cell is then used in combination with a range of complementary electrochemical techniques, numerical modelling, in-situ ESR, single crystal experiments and kinetic isotope measurements to infer a mechanistic scheme for the complex electro-reduction pathway of nitromethane in aqueous solution. Platinum, gold, mercury/copper and mercury/gold electrodes are investigated enabling the most conclusive description of the reduction mechanism to date. The reaction pathway is shown to follow an ECEEE type process with the chemical step proceeding at the electrode surface. The heterogeneous rate constant, k<sub>het</sub>, describing the chemical step is calculated for each electrode surface. For platinum in the pH range 7.0 - 9.0 this value is 0.3 ± 0.06 cm s̄¹. For mercury/copper it is 0.18 cm s̄¹, for gold/mercury it is 0.06 cm s̄¹ and for Au it is 0.095 cm s̄¹. Consideration of these values shows a surprising independence of the heterogeneous rate constant on the chemical identity of the surface with all of the values being similar to within less than an order of magnitude. The reason for the apparent paradox of the observed surface indifference of the chemical reaction step is explained by a homogeneous H transfer from the carbon to the oxygen of the nitromethane radical anion, formed form the initial electron transfer step, occurring in the layer of solution immediately adjacent to the electrode solution as shown in the scheme below. The resulting species, <sup>•</sup>CH2 N(OH))ˉ then undergoes a rapid irreversible adsorption to the electrode surface and subsequent transformation to the final product the hydroxylamine, CH<sub>3</sub>NHOH. It is proposed that if the energy barrier to the adsorption of <sup>•</sup>CH2 N(OH))ˉ is less than that required for the H atom transfer then the reaction rate will be insensitive to the adsorption step and hence the chemical identity of the electrode. This introduces the concept of a whole new electrochemical process: the surface indifferent electrocatalytic reaction.
|
4 |
Electrochemical kinetics and sensing of conjugated dienes in acetonitrileMyedi, Noluthando January 2011 (has links)
>Magister Scientiae - MSc / This thesis focuses on the electroanalysis of some dienes (2-methyl-1.3-butadiene (MBD), tran-1.3-pentadiene (PD), 1.3-cyclohexadiene (CHD) and 3-cyclooctadiene (COD)) found in gasoline and the development of simple electrochemical diene sensors. The detection of dienes in fuels is important as they readily polymerise and form gum in fuel tanks. The electroctivity of the dienes was studied with glassy carbon electrode (GCE) and Pt electrode in tetrabutylammonium perchlorate (TBAP)/acetonitrile solution. Polyaniline-polystyrene sulfonic acid (PANi-PSSA) composite films were electro-deposited or drop-coated on GCE, with and without gold nanoparticles (AuNPs) and characterized by cyclic voltammetry (CV), high resolution transmission electron microscopy (HRTEM) and ultraviolet-visible (UV-vis) spectroscopy. Both composite polymers were found to be of nanofibral structure, and the spherical gold nanoparticles were dispersed uniformly within the polymer. The dienes exhibited no redox peaks on GCE/PANi-PSSA and GCE/PANi-PSSA/AuNPs electrode systems from -1.0 V to +1.5 V, beyond which PANi would overoxidize and lose its electroactivity. Therefore, cyclic voltammetry and steady state amperometry of the four dienes (MBD, PD, CHD and COD) were studied with unmodified Pt and GCE electrodes. Subtractively normalised interfacial-fourier transform infra-red (SNIFTIR) spectroscopic studies of the dienes were performed with Pt electrode. SNIFTIR data showed that there was a definite electro-oxidation of 1.3-cyclohexadiene as electrode potential was changed from E = 770 mV to E = 1638 mV. Severe electrode fouling was observed when steady state amperometric detection of CHD, as a representative diene, was performed on Pt electrode. Randel-Sevčik analysis of the CVs of the dienes on Pt electrode gave diffusion coefficient (Dox) values of 10.65 cm²/s, 9.55 cm²/s, 3.20 cm²/s and 3.96 cm²/s for CHD, COD, PD, and MBD, respectively. The corresponding detection limits (3σn-1) were 0.0106 M, 0.0111 M, 0.0109 M, and 0.0107 M.
|
Page generated in 0.0882 seconds