Spelling suggestions: "subject:"plume"" "subject:"flume""
51 |
Numerical simulation of warm discharge in cold fresh waterGeorge, Alabodite M. January 2017 (has links)
Buoyant plumes in cold fresh water are of interest because of the possibility of buoyancy reversal due to the nonlinear relation between temperature and density in water. Thus an initially rising plume may become a fountain. This project aims to mathematically model such plumes and fountains using numerical simulation by the means of a commercial software, Comsol Multiphysics. Both turbulent and lam- inar cases were investigated in different geometries, and with the assumption that density is a quadratic function of temperature. The turbulent flow cases as con- sidered here in this thesis are relevant to practical applications such as industrial discharge in cold lakes: whereas, the laminar flow case relates to laboratory experi- ments which are typically at scales too small for the flow to be turbulent. Previous investigation on warm discharge placed more attention on the biological implications of the spread along the lake bed, and not interested in analysing the dynamics of such flow, which turns out to be our focus. Furthermore, investigations on buoyant plumes that become negatively buoyant at later time (fountain flow) as considered previously, are based on the assumption that density is a linear function of tem- perature: where entrainment always reduces buoyancy. Whereas, the consideration of the temperature of maximum density is crucial and realistic in many practical situations, especially the power station warm discharge. Mixing is then bound to produce a mixture that is denser than both the discharge and the ambient water if receiving water is less than Tm: where this situation differs from plumes with linear mixing properties. Therefore, our focus is to better fathom the behaviour of warm discharge so as to give a detailed description of the flow, and also to observe buoyancy reversal whenever water that is denser than both the discharge and the receiving water is produced. The simulations were carried out for Prandtl number Pr = 7 & 11.4 and over the ranges of Froude number 0.1 ≤ Fr ≤ 5 and Reynolds numbers 50 ≤ Re ≤ 106, with source temperatures that are assumed to be higher than the temperature of maximum density Tm, and the ambient water below the Tm. Our results show some distinct behaviours from those experimental investigations by Bukreev, who also considered warm discharge where water that has temperature above the temperature Tm is initiated into a medium below Tm. The results here also showed some differences from those investigations with the linear dependence relation assumption.
|
52 |
Effects of noise on teleseismic T* estimation and attenuation tomography of the Yellowstone regionAdams, David C., 1952- 06 1900 (has links)
xv, 108 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Studies on seismic attenuation are an important complement to those on seismic velocity, especially when interpreting results in terms of temperature. But estimation of attenuation (t*) is more computationally involved and prone to contamination by noise, especially signal-generated noise. We have examined the effects of various forms of synthetic noise on t* estimation using time and frequency domain methods with varying window lengths and data frames of reference. We find that for S-waves, error due to noise can be reduced by rotating the data into the estimated polarization direction of the signal, but unless the exact nature of the noise is known, no method or window size is clearly preferable. We recommend the use of multiple estimation methods including a careful assessment of the uncertainty associated with each estimate, which is used as a weight during inversion for 1/Q. Our synthetic tests demonstrate that the misfit between actual and estimate-predicted traces or spectra correlates with t* error, and a similar relationship is suggested for real data.
Applying this approach to data from the Yellowstone Intermountain Seismic Array, we employ two important constraints during inversion. First, we scale the misfit values so that the resulting weights are comparable in magnitude to the squares of the eventual data residuals. Second, we smooth the model so that the maximum attenuation (1/Q) does not exceed a value which would totally explain the observed velocity anomaly. The tomographic models from all the estimation methods are similar, but in the vicinity of the Yellowstone mantle plume, S-wave models show greater attenuation than do P-wave models. We attribute this difference to greater focusing by the plume of S-waves. All models show relatively high attenuation for the plume at depth, but above 250 km attenuation in the plume drops rapidly to values less than those of the surrounding mantle. We attribute this drop to the onset of partial melting, which dehydrates the olivine crystals, suppressing dislocation mobility and thereby attenuation. These attenuation models suggest excess plume temperatures at depth which are too low to support a plume origin in the lower mantle.
This dissertation includes unpublished co-authored material. / Committee in charge: Eugene Humphreys, Chairperson, Geological Sciences;
Emilie Hooft Toomey, Member, Geological Sciences;
Douglas Toomey, Member, Geological Sciences;
James Isenberg, Outside Member, Mathematics
|
53 |
Resolving Upper Mantle Seismic Structure Beneath the Pacific Northwest and Inferred Plume-Lithosphere Interactions During the Steens-Columbia River Flood Basalt EruptionsDarold, Amberlee, Darold, Amberlee January 2012 (has links)
Cenozoic tectonics of the Pacific Northwest (PNW) and the associated mantle structures are remarkable, the latter revealed by EarthScope seismic data. In this thesis we model teleseismic body waves constrained by ambient-noise surface waves and teleseismic receiver function analysis in order to recover better-controlled higher resolution images of the PNW continuously from the surface of the crust to the base of the upper mantle. We focus on and have clearly imaged two major upper mantle structures: (1) the high-velocity Farallon slab (the "Siletzia curtain") extending vertically beneath the Challis-Kamloops-Absaroka volcanic flareup (~53-47 Ma) of western Idaho and central Washington; and (2) a high-velocity anomaly beneath the Wallowa Mountains of northeast Oregon associated with the main Columbia River flood basalts source region. The proximity of these two structures along with the tectono-magmatic history of the PNW leads us to reexamine the origin of the Columbia River Basalts ~ 16 Ma.
This thesis includes co-authored material submitted for publication.
|
54 |
Viscosity of fayalite melt at high pressure and the evolution of the Iceland mantle plumeSpice, Holly Elizabeth January 2016 (has links)
Part 1 The viscosity of silicate melts is a fundamental physical property that determines the mobility and transport behaviour of magma on the surface and in planetary interiors. The viscosity of liquid fayalite (Fe2SiO4), the Fe-rich end-member of the abundant upper mantle mineral olivine, was determined up to 9.2 GPa and 1850 °C using in situ falling sphere viscometry and X-ray radiography imaging. The viscosity of liquid fayalite was found to decrease with pressure both along the melting curve and an isotherm, with temperature having very little influence on viscosity at high pressure. This work is the first to determine the viscosity of a highly depolymerized silicate melt at high pressure as only recent advances in experimental techniques have allowed the difficulties associated with studying depolymerized liquids at high pressure to be overcome. The results are in contrast with previous studies on moderately depolymerized silicate melts such as diopside and peridotite which found viscosity to initially increase with pressure. In accordance with recent in situ structural measurements on liquid fayalite, the viscosity decrease is likely a result of the increase in Fe-O coordination with pressure. The results show that the behaviour of silicate melts at depth is strongly dependent on the melt structure and composition. Part 2 The magnitude of the thermal anomaly at hotspot locations has a fundamental influence on the dynamics of mantle melting and therefore has an important role in shaping the surface of our planet. The North Atlantic Igneous Province (NAIP) is the surface expression of a major mantle plume and is unique in the fact that it has a complete magmatic history. The highest 3He/4He volcanic rocks on Earth are found in the early NAIP picrites of West Greenland and Bafin Island and high 3He/4He rocks are still erupted on Iceland today. However, the relationship between 3He/4He and mantle plumes has remained enigmatic. The main aim of this work is to use the ideal opportunity provided by the NAIP to investigate the relationship between temperature, mantle melting dynamics and helium isotopes within a mantle plume. The magmatic temperatures of a suite of picrites and primitive basalts spanning the spatial and temporal range of the NAIP was determined using traditional olivine-melt thermometry, a forward mantle melting model and the newly developed Al-in-olivine thermometer. This study is the first to provide a detailed petrologic approach to investigating the mantle temperature of the NAIP throughout its magmatic history and is the first to compare all three techniques in detail. The Al-in-olivine thermometer was found to be the most robust proxy for mantle temperature. The early stage of volcanic activity in the NAIP is associated with the arrival of the ancestral Iceland plume head and resulted in a uniform temperature anomaly with Al-in-olivine temperatures 250-300° above that of ambient MORB across an area 2000 km in diameter. In addition, the temperature of the plume is shown to have been subject to large temperature fluctuations on a timescale of 107 years and is currently increasing, which has had profound effects on the melting dynamics and bathymetry of the North Atlantic region. Using existing and new 3He/4He measurements, no clear relationship between 3He/4He and temperature is observable. However, it is noted that the maximum 3He/4He of primitive basalts from the NAIP has decreased through time. These relationships are explicable if the high 3He/4He reservoir is located in either the core or the core-mantle boundary (CMB), from which helium diffuses into the lower mantle. The high 3He=4He signature is incorporated into a plume when it breaks away from the base of the mantle and over the lifetime of the plume, the 3He/4He source is gradually depleted. The temperature of the plume can vary independently in responses to heat flow at the CMB, which is in turn related to changes in mantle convection. Global plate tectonics and mantle processes are therefore intricately linked with melting dynamics at hotspot locations.
|
55 |
Descrição da metodologia do cálculo de dispersão de plumas aplicada a um complexo industrial / Plume dispersion model methodology description applied to an industrial complexCesar Marcelo Cajazeira Vidal 29 May 2008 (has links)
O cálculo de dispersão de plumas é uma ferramenta empregada para se estimar o alcance dos poluentes emitidos por uma chaminé nas suas redondezas. É empregada nos países desenvolvidos há alguns anos e recentemente vem sendo exigida pelas agências ambientais brasileiras como um dos requisitos para concessão das licenças de operação. Baseia-se em um cálculo gaussiano, onde os dados de entrada são as taxas de emissão, os dados físicos da chaminé, dados meteorológicos e topográficos. Como é uma técnica recente no Brasil, este trabalho se propõe a fazer uma descrição da metodologia e suas etapas, indicando quais são os dados mais relevantes e quais simplificações podem ser feitas. O estudo de caso foi realizado nas instalações das Indústrias Nucleares do Brasil (INB). Os resultados indicaram que a influência de edificações adjacentes à fonte emissora é um dos parâmetros mais importantes, seguido da influência do relevo da região. Foi também realizada uma comparação entre os dois softwares comerciais existentes, o ISCST3, de maior complexidade, e o SCREEN mais simplificado, e indicou que o SCREEN pode ser usado como uma ferramenta de avaliação inicial, quando todos os dados de entrada necessários para se usar o ISCST3 não estão disponíveis / The plume dispersion modeling is a tool used to estimate the pollutants distribution in the vicinities of a chimney. It has been widely used in developed countries for a long time and now is started to be used by Brazilian environmental agencies as one of the requirements to obtain the operation license. It is based on a Gaussian modeling where input data are the emissions rate, physical data from the stack, meteorological data, and topographical characteristics. As this technique recently used in Brazil, this work proposes to describe the methodology and its steps, indicating the most relevant parameters, the possible simplifications, and details necessary. The case study was done at the site of Indústrias Nucleares do Brasil (INB). The results indicated that the edifications near the emission source are the most relevant parameter, followed by the topographical characteristics. A comparison was also done between the two commercial softwares available, the ISC3, with more details, and the SCREEN with simpler features. The results indicated that the SCREEN software can be used as an initial evaluation tool, whenever all input data necessary to process ICS3 are not available
|
56 |
Contribution à l'étude des fontaines turbulentes / Turbulent miscible fountainsMehaddi, Rabah 14 November 2014 (has links)
Une fontaine peut se créer quand la flottabilité d'un rejet vertical s'oppose à sa quantité de mouvement. Ce type d'écoulement connaît beaucoup d'applications que ce soit dans la nature (panaches issus des éruptions volcaniques) ainsi que dans l'industrie du bâtiment (chauffage et refroidissement) ou dans le domaine des risques (rejets accidentel de gaz lourd). Dans cette thèse, nous nous focalisons sur l'étude des fontaines turbulentes miscibles. Dans le premier chapitre nous reformulons le modèle théorique de Morton et al. (1956) pour traiter le cas des fontaines en milieu linéairement stratifié. La résolution de ce modèle permet d'obtenir des relations analytiques pour la hauteur de la fontaine et sa hauteur d'étalement. Ce modèle est, par la suite, étendu au cas des panaches et des jets turbulents en milieu linéairement stratifié. Dans le second chapitre, nous proposons un modèle théorique permettant d'étudier une fontaine turbulente miscible en régime établi. Pour calibrer ce modèle, des simulations numériques aux grandes échelles (LES) sont utilisées pour obtenir une estimation des valeurs des constantes associées aux phénomènes d'échanges turbulents entre les parties ascendante et descendante de la fontaine. L'objectif du dernier chapitre est d'apporter, à partir d'expérimentations en laboratoire, des informations quantitatives sur l'influence de forts écarts de masses volumiques dans les écoulements de type fontaine. Les expériences sont réalisées pour des fontaines gazeuses (mélange air/hélium) en régime établi. / A fountain can occur when the buoyancy of a vertically released fluid opposes its momentum. Such flows have many applications in nature (plumes issuing from volcanic eruption), building industry (cooling or heating) or in the area of risk management (accidental release of heavy dangerous gas). In this thesis, we focus on the study of miscible turbulent fountains. In the first chapter, we revisit the theoretical model of Morton et al. (1956) to handle the case of fountains in linearly stratified fluid. The resolution of this model allows us to obtain analytical relations for the fountain height as well as the spreading height of its horizontal layer. This model is subsequently extended to the case of turbulent jets and plumes in linearly stratified fluid. In the second chapter, we propose a theoretical model for the study of a turbulent miscible fountain in a steady state. To calibrate this model, large eddy simulations (LES) are used to obtain an estimate of the values of the constants associated with the additional terms appearing in the equations. The objective of the final chapter is to provide, from laboratory experiments, quantitative information on the influence of strong density differences on the behaviour of a turbulent fountain. These experiments shows that all the classical relations valid for the Boussinesq case can be extended to the non-Boussinesq case by using an appropriate definition of the Froude number.
|
57 |
Development Of A Plume With Off-Source Volumetric HeatingVenkatakrishnan, L 07 1900 (has links) (PDF)
No description available.
|
58 |
Unrefined Humic Substances as a Potential Low-cost Remediation Method for Groundwater Contaminated with Uranium in Acidic ConditionsGonzalez Raymat, Hansell 25 October 2018 (has links)
Anthropogenic activities such as uranium mining and milling, nuclear weapons production, and nuclear reprocessing have left a legacy of groundwater and soil contaminated with uranium that needs to be addressed. Therefore, developing new remediation technologies to sequester uranium in situ is crucial. The objective of the study was to determine if low-cost commercially available unrefined humic substances, such as Huma-K, can be used to facilitate uranium sorption to minerals in soil and sediment. Sediments from the saturated zone beneath the F-Area seepage basins at the Savannah River Site (SRS) in South Carolina were used for the present study. The SRS site is analogous to many contaminated locations where groundwater acidity enhances uranium and other contaminants mobility.
First, a variety of techniques were applied to characterize Huma-K and SRS sediment. Characterization studies showed that Huma-K possesses functional groups that have an acidic nature such as carboxyl and phenol groups. For SRS sediment, a mineral composition of mainly quartz (93.2%), kaolinite (5.1%), and goethite (1.1%) was identified.
Second, the interactions between Huma-K and SRS sediment were investigated through batch experiments. Sorption, homogeneous precipitation, and surfaced-induced precipitation were observed to be enhanced at pH 4. However, Huma-K removal from solution decreased with an increase of pH. The sorption behavior was not able to be described by any of the models employed (pseudo-first, pseudo-second, Langmuir, and Freundlich).
Third, the interactions between uranium and SRS sediment with and without Huma-K amendment were investigated. In acidic conditions (pH 3-5), the sorption capacity of SRS sediment amended with Huma-K was significantly increased compared to plain sediment. At circumneutral conditions, uranium removal from solution decreased for SRS sediment amended with Huma-K, compared with plain sediments, likely as a result of the formation of aqueous uranium-humic complexes. In summary, the results from the present study suggest that Huma-K, and likely other unrefined humate products, has the characteristics and effects necessary to be suitable for subsurface injection to remediate uranium in acidic groundwater conditions. The treatment zone will persist as long as the pH does not increase sufficiently to cause soil-bound Huma-K to be released, remobilizing uranium.
|
59 |
Integrating volatile and trace element geochemistry to evaluate sources of volcanism in oceanic and continental rift environmentsMaletic, Erica Lynn 01 September 2022 (has links)
No description available.
|
60 |
Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial InstabilitiesRouhnia, Mohamad 21 September 2016 (has links)
This study focuses on deposition processes from sediment laden buoyant river plumes in deltaic regions. The goal is to experimentally examine the effects of various physical phenomena influencing the rate at which sediment is removed from the plume. Previous laboratory and field measurements have suggested that, at times, sedimentation can take place at rates higher than that expected from individual particle settling (i.e., C{W}_{s}). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability sets of experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurement were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a separate floc camera setup and image analysis routines. Results from the stratification tank experiments suggest that the settling-driven gravitational instabilities do occur in the presence of flocs, and that they can produce sedimentation rates higher than those predicted from floc settling. A simple cylinder based force balance approach adopting the concept of critical Grashof number was used to develop a model for the effective settling velocity under settling-driven instabilities that is a function of sediment concentration in the plume only. Results from the stratification flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This settling rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to U{Ri}^{-2}.
Following the experiments, analyses were made among contributions of different mechanisms on the total deposition rate, and the locations that the various mechanisms may be active in the length of a plume. This analysis leads to a conceptual discretization of a plume into three zones of sedimentation behavior and Richardson number. The first zone is the supercritical near-field plume with intense interface mixing. Zone two represents the subcritical region where interface mixing still occurs, and zone three is the high Richardson number zone where mixing at the interface is effectively nonexistent. In zones one and two, individual floc settling and shear-induced settling mechanisms play the major roles in removing sediment from the plume. While, shear-induced settling rate was found to be maximum near the river mouth, its share of the total settling rate increases in the crossshore direction, since sand and large particulates deposit near the inlet and only small particles (with relatively low settling velocity) remain as the plume propagates. The third zone, starts when the interfacial mixing diminishes and leaking commences. / Ph. D.
|
Page generated in 0.0325 seconds