Spelling suggestions: "subject:"plume inn grid"" "subject:"plume inn arid""
1 |
Modélisation multi échelles de l'impact du trafic routier sur la qualité de l'air / Multi scale modeling of roadway traffic impact on air qualityBriant, Régis 16 November 2012 (has links)
Le trafic routier contribue à la pollution atmosphérique aussi bien à proximité des voies avec des polluants tels que le dioxyde d'azote (NO2), les particules (PM) et certains composés organiques volatils (COV) qu'à des échelles spatiales plus grandes (pollution de fond urbaine et régionale) avec des polluants formés dans l'atmosphère tels que l'ozone (O3) et la fraction secondaire des particules. Étant donné les interactions entre pollution de proximité et pollution de fond, il est souhaitable de combiner en un seul outil de calcul des modèles à échelles locale et régionale. Cette méthode de modélisation multi-échelles a été largement utilisée pour simuler l'impact des émissions de cheminées (sources ponctuelles) avec des modèles de panache traités en sous-maille d'un modèle eulérien tri-dimensionnel. Cependant, une telle méthode n'est pas applicable à un réseau routier en raison des temps de calcul prohibitifs associés à la discrétisation d'une source linéique en un ensemble de sources ponctuelles. Par conséquent, une nouvelle méthode de modélisation multi-échelles a été développée, qui traite les panaches émis par des sources linéiques en sous-maille d'un modèle eulérien. Tout d'abord, une formulation améliorée d'un modèle gaussien de panache linéique a été développée. Ce nouveau modèle à ensuite fait l'objet d'une évaluation détaillée avec des mesures en proximité de routes ainsi qu'avec d'autres modèles gaussiens. La combinaison de ce modèle gaussien et d'un modèle eulérien (Polair3D) a été implémentée dans la plate-forme de modélisation Polyphemus. Les performances (temps de calcul et précision) du nouveau modèle de panache en sous-maille ont été évaluées et comparées aux performances des modèles gaussien et eulérien seuls. Ce modèle multi-échelles traite la chimie des oxydes d'azote (NOx) et des principaux COV. Le traitement multi-échelles a un effet important sur les concentrations de certains polluants en termes de pollutions de proximité et de fond urbain / Roadway traffic contributes to atmospheric pollution near roads, with pollutants such as nitrogen dioxide (NO2), particles (PM) along with some volatile organic compounds (VOC), as well as at larger spatial scales (urban and regional background pollution) with pollutants formed in the atmosphere such as ozone (O3) and the secondary fraction of PM. Because of interactions between local and background pollutants, it is desirable to combine into a single computational tool, regional and local scale models. This multi-scale modeling method has been widely used to simulate the impact of chimney emissions (point sources) with a sub-grid treatment of plume or puff models instead within a 3-dimensional Eulerian model. However, such a method is not applicable to a road network because of the prohibitive computations associated with the line source discretization into a set of point sources. Thus, a new multi-scale modeling method was developed, which treats the plumes emitted from line sources as sub-grid components of an Eulerian model. First, an improved formulation of a Gaussian plume model for line sources was developed. This new model was then subject to a detailed evaluation with near roadway measurements along with other Gaussian models. The incorporation of the Gaussian plume model into an Eulerian model (Polair3D) was implemented as part of the modeling platform Polyphemus. The performance (computational effectiveness and precision) of the new multi-scale model (Plume-in-Grid) was evaluated and compared to those of a stand-alone Gaussian and Eulerian models. The multi-scale model treats nitrogen oxide (NOx) chemistry along with major VOC. The multi-scale treatment has an important effect on the concentration of some pollutants in terms of local and urban background pollution
|
Page generated in 0.0612 seconds