• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 1
  • Tagged with
  • 25
  • 15
  • 13
  • 12
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Seasonal occurrence and abundance of diamondback moth, Plutella xylostella (L.), and its major parasitoids on brassicaceous plants in South Australia / by Bijan Hatami

Hatami, Bijan. January 1996 (has links) (PDF)
Bibliography: leaves 121-151. Examines seasonal variation in population numbers of Diamondback moths, and estimates mortality, due to parasitoids, of larvae at different stages of development.
22

Genetic and biological characterisation of a novel South African Plutella xylostella granulovirus (PlxyGV) isolate

Abdulkadir, Fatima January 2014 (has links)
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is an important pest of cruciferous crops worldwide. The prolonged use of synthetic chemical insecticides as a primary means of control has resulted in the development of resistance in pest populations. In addition, the pest has also evolved resistance to the bacterial insecticidal protein of Bacillus thuringiensis which is also widely used as a method of control. Baculoviruses are considered as effective alternatives to conventional methods of control when incorporated into integrated pest management (IPM) programmes. These viruses target the larval stages of insects, are generally host-specific and are safe for use in the environment. This study aimed to isolate a baculovirus from a laboratory-reared P. xylostella colony, characterise it genetically and then evaluate its virulence against neonate and fourth instar larvae. A laboratory colony of P. xylostella was established using pupae and asymptomatic larvae collected from a cabbage plantation outside Grahamstown in the Eastern Cape province of South Africa. The colony flourished in the laboratory due to prime conditions and availability of food. The duration of development from egg to adult was determined by observation and imaging of the various life stages. The mean developmental time from egg to adult was observed to be 14.59 ± 0.21 days. The population of the insects increased rapidly in number leading to overcrowding of the insect colony, and hence appearance of larvae with viral symptoms. Occlusion bodies (OBs) were extracted from symptomatic larval cadavers and purified by glycerol gradient centrifugation. Analysis of the purified OBs by transmission electron microscopy revealed the presence of a granulovirus which was named PlxyGV-SA. The virus isolate was genetically characterised by restriction endonuclease analysis of the genomic DNA, and PCR amplification and sequencing of selected viral genes. The complete genome sequence of a Japanese P. xylostella granulovirus isolate, PlxyGV-Japan, has been deposited on the GenBank database providing a reference strain for comparison with DNA profiles and selected gene sequences of PlxyGV-SA. BLAST analysis of the granulin gene confirmed the isolation of a novel South African PlxyGV isolate. Comparison of the restriction profiles of PlxyGV-SA with profiles of PlxyGV-Japan and other documented PlxyGV profiles obtained by agarose gel electrophoresis revealed that PlxyGV-SA is a genetically distinct isolate. The data obtained from the sequencing and alignment of ecdysteroid UDP-glucosyltransferase (egt), late expression factor 8 (lef-8) and late expression factor 9 (lef-9) genes with those of PlxyGV-Japan also showed that PlxyGV-SA is a genetically different isolate. In order to determine the biological activity of PlxyGV-SA against neonate and fourth instar P. xylostella larvae, surface dose bioassays were conducted. The median lethal concentration of the virus required to kill 50% (LC₅₀) and 90% (LC₉₀) of the larvae was estimated by feeding insects with a range of doses. In addition, the time to kill 50% of the larvae (LT₅₀) was determined by feeding insects with the LC₉₀ concentration. Larval mortality was monitored daily until pupation. The data obtained from the dose response assays were subjected to probit analysis using Proban statistical software. The time response was determined using GraphPad Prism software (version 6.0). The LC₅₀ and LC₉₀ values for the neonate larvae were 3.56 × 10⁵ and 1.14 × 10⁷ OBs/ml respectively. The LT₅₀ was determined to be 104 hours. The neonate larvae were found to be more susceptible to infection than the fourth instar larvae with the same virus concentration. The concentrations used for the neonate larvae assay did not have a significant effect on the fourth instar as no mortality was recorded. This is the first study to describe a novel South African PlxyGV isolate and the results suggest that PlxyGV-SA has significant potential for development as an effective biopesticide for the control of P. xylostella in the field.
23

The influence of cabbage cultivars on the fitness of Plutella xylostella (Linnaeus 1758) (Lepidoptera: Plutellidae) and its biological control agent Cotesia vestalis (Haliday 1834) (Hymenoptera: Braconidae)

Nethononda, Phophi Dzivhuluwani 20 April 2016 (has links)
The diamondback moth, Plutella xylostella (Linnaeus 1758.) (Lepidoptera: Plutellidae), is a major insect pest of Brassica crops in many parts of the world leading to economic losses amounting to an estimated US$ 4-5 billion. Although parasitoids (biological control agents) play a major role in suppressing the pest populations during November – May in South Africa, the pest reaches outbreak status during September and October due to low impact of parasitoids, which has necessitated regular application of insecticides. However, insecticide applications have often resulted in the pest developing resistance, and when coupled with the negative effects of several insecticides on parasitoids, integration of the two pest control strategies for effective management of P. xylostella population density has been difficult to achieve. One approach that has received little attention is integration of host plant resistance (bottom-up effect) and biological control (top-down effect) for effective management of P. xylostella. However, the interaction between host plants, the insect pest, and parasitoids is not simple and straight forward, as strong negative impact of host plants on fitness of the insect pest can be cascaded up the food chain and have a negative impact on a given parasitoid, which in turn may reduce the desired complementary effect between the two pest control strategies. To identify optimal interactions between cabbage (Brassica oleracea L. var. capitata, Brassicaceae), P. xylostella and its larval parasitoid Cotesia vestalis (Haliday 1834) (Hymenoptera: Braconidae), this study investigated (i) the effects of seven cabbage cultivars (Empowa, Hollywood F1, Megaton, Leano, Menzania, Beverley Hills and Karabo) on fitness parameters (survival, developmental time, pupal weights, longevity without food and oviposition rates) of P. xylostella; (ii) the influence of the same host plant cultivars on fitness parameters (developmental time, pupal weights, longevity xi without food, fecundity, emergence rate and sex ratio) of C. vestalis. Furthermore, net reproductive rates and the intrinsic rates of natural increase were calculated for C. vestalis that emerged from hosts fed on each of the cultivars. All experiments were conducted in climate-controlled laboratory rooms maintained at 22 ± 1 ºC (mean ± S.D.), 60 ± 5 % RH and 16L: 8D photoperiod. Under the no choice test, overall survival of P. xylostella immature stages was highest on Karabo (67.26%) and lowest on Megaton (44.92%). The larval and pupal developmental period, and generation time was prolonged on Empowa (18.48 days), Karabo (14.64 days) and Beverly Hills (17.48 days), while developmental period on Hollywood F1 (13.79 days) was shortest. Male and female P. xylostella pupal weights were lighter from larvae that fed on Megaton (4.13 and 4.65 mg), Menzania (4.53 and 4.91 mg), and Hollywood F1 (4.11 and 5.08 mg), whereas pupal weights from Karabo (6.0 and 6.82 mg) were the heaviest. Unfed female moths originally reared on Beverley Hills had the highest longevity (5.05 days), whereas those reared on Leano (3.54 days) and Megaton (3.89 days) had the shortest life span. Under the choice-test, P. xylostella moth laid significantly more eggs on Empowa (48.8%) and Hollywood F1 (45.6%) and least on Menzania (11.8%) and Leano (10.6%). Megaton was more resistant to P. xylostella due to lower survival rates of immature stages, lower pupal weights and moth longevity. The generation time of C. vestalis was shortest on Karabo (10.10 days) and Leano (10.38 days), and longest on Megaton (12.57 days) and Empowa (12.80 days). The highest pupal weight of C. vestalis was obtained from parasitoids reared from P. xylostella fed Menzania (5.4 mg), Megaton (5.25 mg) and Beverly Hills (4.85 mg) and the lightest on Karabo (3.8 mg). Parasitoids reared on larvae that fed on Hollywood F1 lived the longest (2.28 days) followed by Menzania (1.94 days) and Beverly Hills (1.8 days), whereas those whose hosts fed on Leano had shortest life span (0.83 days). Despite the parasitoids from Megaton hosts being heavier, their fecundity and number of female progeny per female (16.87 and 3.60, respectively) were lowest. Cotesia vestalis fecundity and daughters produced per female were highest on hosts fed on Menzania (38.00 and 9.13, respectively) and Beverly Hills (32.87 and 9.07, respectively). As a consequence, the net reproductive rate (R0) and intrinsic rate of increase (r) were higher on Menzania (7.87 and 0.58, respectively) and Beverly Hills (8.29 and 0.62, respectively). As survival and overall fitness of P. xylostella was lower on Megaton, this cultivar can play a major role in restricting population growth of this pest and thus generational number of eggs deposited on it during September and October. However, this strong bottom-up effect of Megaton on P. xylostella was cascaded up the food chain, as overall fitness of C. vestalis was lower on hosts developing on it. In contrast, the overall fitness of C. vestalis was higher on hosts that developed on Menzania and Beverly Hills. As these cultivars showed potential to sustain population density of C. vestalis at higher levels, it is also assumed that the period required for the parasitoid to reach the critical density to suppress the host population at a lower average density will be reached quicker than on other cultivars. Thus, their cultivation may improve biological control of P. xylostella during November–May in South Africa / Agriculture, Animal Health and Human Ecology / M. Sc. (Agriculture)
24

Seasonal occurrence and abundance of diamondback moth, Plutella xylostella (L.), and its major parasitoids on brassicaceous plants in South Australia / by Bijan Hatami.

Hatami, Bijan January 1996 (has links)
Bibliography: leaves 121-151. / xix, 151 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Examines seasonal variation in population numbers of Diamondback moths, and estimates mortality, due to parasitoids, of larvae at different stages of development. / Thesis (Ph.D.)--University of Adelaide, Dept. of Crop Protection, 1996
25

Evaluation of the potential of Pteromalus puparum (L.) (Hymenoptera: Pteromalidae) for suppression of the imported cabbageworm and parasitism of the diamondback moth

Lasota, Joan Ann January 1985 (has links)
The seasonal abundance of the imported cabbageworm, <i>Artogeia rapae</i> (L.)), cabbage looper <i>Trichoplusia ni</i> (Hubner)) and diamondback moth (<i>Plutella xylostella</i> (L.)) was determined in 1982 to 1984 on cabbage in southwest Virginia. The imported cabbageworm was the most important pest. It had one and a partial second generation in 1982 and 1983, and two and a partial third generation in 1984. Market Prize and Green Winter varieties had lower <i>A. rapae</i> infestations than Abbott & Cobb #5 or Rio Verde. Two generations of the diamondback moth, which preferentially fed on cabbage leaves versus heads, were seen in 1983 and 1984. <i>Diadegma insularis</i> (Meus.) (Hymenoptera: Ichneumonidae) parasitized 46% and 69% of the diamondback moth in 1983 and 1984, respectively. Higher parasitization of <i>P. xylostella</i> was found in pupae collected from Abbott & Cobb #5. Two generations of the cabbage looper were seen in 1983 and a single generation in 1984. <i>Pteromalus puparum</i> (L.) (Hymenoptera: Pteromalidae) parasitized 64.1% and 32.5% of imported cabbageworm pupae in 1983 and 1984; parasitism was most pronounced in the latter part of the season. High percentages of parasites successfully emerged as adults, indicating efficient host utilization. Most parasite mortality within the host occurred in the larval stage; mean adult parasite emergence per host for 1983 and 1984 was 52.3 with a 1:1 sex ratio. <i>P. puparum</i> parasitized either host sex, producing equal proportions of male and female parasites. Adult female <i>P. puparum</i> were not adversely affected by residues of methomyl (Lannate®), permethrin (Pounce®) and fenvalarate (Pydrin®), but males showed significantly higher mortality than controls following exposure to methomyl after 12 h, and methomyl and permethrin after six days. <P. puparum</i> adults were successfully refrigerated for up to 15 days at 3°C in individual gelatin capsules. Survival beyond 15 days was better at l5°C and 23°C. <i>A. rapae</i> larvae could be reared at densities of 30 to 60 larvae per 70±10 g on a high wheat germ artificial diet. Pupae from the lowest density were larger in length and weight than those reared at the two higher densities, and all laboratory-reared pupae were smaller than either normal or parasitized field pupae. / Ph. D.

Page generated in 0.0381 seconds